Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
A104145
a(1) = 1; let A(k) = sequence of first 2^(k-1) terms; then A(k+1) is concatenation of A(k) and (A(k)-1) if a(k) is odd, or concatenation of A(k) and (A(k)+1) if a(k) is even.
2
1, 0, 2, 1, 2, 1, 3, 2, 0, -1, 1, 0, 1, 0, 2, 1, 2, 1, 3, 2, 3, 2, 4, 3, 1, 0, 2, 1, 2, 1, 3, 2, 0, -1, 1, 0, 1, 0, 2, 1, -1, -2, 0, -1, 0, -1, 1, 0, 1, 0, 2, 1, 2, 1, 3, 2, 0, -1, 1, 0, 1, 0, 2, 1, 0, -1, 1, 0, 1, 0, 2, 1, -1, -2, 0, -1, 0, -1, 1, 0, 1, 0, 2, 1, 2, 1, 3, 2, 0, -1, 1, 0, 1, 0, 2, 1, -1, -2, 0, -1, 0, -1, 1, 0, -2, -3, -1, -2, -1, -2, 0, -1, 0, -1, 1
OFFSET
1,3
LINKS
FORMULA
a(n) = 1 - A137412(n). - Leroy Quet, Apr 22 2008
EXAMPLE
a(3) = 2 is even, so A(4) (1,0,2,1,2,1,3,2), the first 8 terms of the sequence, is A(3) (1,0,2,1) concatenated with each term of A(3) plus one (2,1,3,2).
PROG
(Python)
from itertools import count, islice
def a_gen():
yield 1
A = [1]
for k in count(0):
for i in range(2**(k)):
x = A[i]+(-1)**abs(A[k])
A.append(x)
yield x
A104145_list = list(islice(a_gen(), 100)) # John Tyler Rascoe, Jun 17 2024
CROSSREFS
Cf. A137412.
Sequence in context: A134780 A247379 A154819 * A230981 A123675 A356226
KEYWORD
easy,sign
AUTHOR
Leroy Quet, Mar 07 2005
EXTENSIONS
More terms from Joshua Zucker, May 10 2006
STATUS
approved