Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
A137270
Primes p such that p^2 - 6 is also prime.
4
3, 5, 7, 13, 17, 23, 47, 53, 67, 73, 83, 97, 107, 113, 167, 193, 197, 263, 293, 317, 367, 373, 383, 457, 463, 467, 487, 503, 557, 593, 607, 643, 647, 673, 677, 683, 773, 787, 797, 823, 827, 857, 877, 887, 947, 1033, 1063, 1087, 1103, 1187, 1193, 1223, 1303
OFFSET
1,1
COMMENTS
Each of the primes p = 2,3,5,7,13 has the property that the quadratic polynomial phi(x) = x^2 + x - p^2 takes on only prime values for x = 1,2,...,2p-2; each case giving exactly one repetition, in phi(p-1) = -p and phi(p) = p.
The only common term in A062718 and A137270 is 5. - Zak Seidov, Jun 16 2015
REFERENCES
F. G. Frobenius, Uber quadratische Formen, die viele Primzahlen darstellen, Sitzungsber. d. Konigl. Acad. d. Wiss. zu Berlin, 1912, 966 - 980.
LINKS
FORMULA
A000040 INTERSECT A028879. - R. J. Mathar, Mar 16 2008
EXAMPLE
The (2 x 7 - 2) -1 = 11 primes given by the polynomial x^2 + x - 7^2 for x = 1, 2, ..., 2 x 7 - 2 are -47, -43, -37, -29, -19, -7, 7, 23, 41, 61, 83, 107.
MAPLE
isA028879 := proc(n) isprime(n^2-6) ; end: isA137270 := proc(n) isprime(n) and isA028879(n) ; end: for i from 1 to 300 do if isA137270(ithprime(i)) then printf("%d, ", ithprime(i)) ; fi ; od: # R. J. Mathar, Mar 16 2008
MATHEMATICA
Select[Prime[Range[2, 300]], PrimeQ[#^2-6]&] (* Harvey P. Dale, Jul 24 2012 *)
PROG
(Magma) [p: p in PrimesUpTo(1350) | IsPrime(p^2-6)]; // Vincenzo Librandi, Apr 14 2013
CROSSREFS
Sequence in context: A372141 A262100 A171566 * A071111 A177070 A247018
KEYWORD
nonn,easy
AUTHOR
Ben de la Rosa and Johan Meyer (meyerjh.sci(AT)ufa.ac.za), Mar 13 2008
EXTENSIONS
Corrected and extended by R. J. Mathar, Mar 16 2008
STATUS
approved