OFFSET
1,2
COMMENTS
Row sums = A000010, phi(n): (1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10, 4,...); as a consequence of the Dedekind-Liouville rule illustrated in the example and on p. 137 of "Concrete Mathematics".
REFERENCES
Ronald L. Graham, Donald E. Knuth & Oren Patashnik, "Concrete Mathematics" 2nd ed.; Addison-Wesley, 1994, p. 137.
LINKS
G. C. Greubel, Rows n = 1..50 of the triangle, flattened
FORMULA
EXAMPLE
First few rows of the triangle are:
1;
2, -1;
3, 0, -1;
4, -2, 0, 0;
5, 0, 0, 0, -1;
6, -3, -2, 0, 0, 1;
7, 0, 0, 0, 0, 0, -1;
8, -4, 0, 0, 0, 0, 0, 0;
9, 0, -3, 0, 0, 0, 0, 0, 0;
10, -5, 0, 0, -2, 0, 0, 0, 0, 1;
11, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1;
12, -6, -4, 0, 0, 2, 0, 0, 0, 0, 0, 0;
13, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1;
14, -7, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 1;
...
Row 12 = (12, -6, -4, 0, 0, 2, 0, 0, 0, 0, 0, 0) since (Cf. A126988 - the divisors of 12 are (12, 6, 4, 3, 0, 2, 0, 0, 0, 0, 0, 1) and applying mu(k) * (nonzero terms), we get (1*12, (-1)*6, (-1)*4, 1*2) sum = 4 = phi(12).
MATHEMATICA
A143239[n_, k_]:= If[Mod[n, k]==0, MoebiusMu[k]*(n/k), 0];
Table[A143239[n, k], {n, 15}, {k, n}]//Flatten (* G. C. Greubel, Sep 12 2024 *)
PROG
(Magma)
A143239:= func< n, k | (n mod k) eq 0 select MoebiusMu(k)*(n/k) else 0 >;
[A143239(n, k): k in [1..n], n in [1..14]]; // G. C. Greubel, Sep 12 2024
(SageMath)
def A143239(n, k): return moebius(k)*(n//k) if (n%k)==0 else 0
flatten([[A143239(n, k) for k in range(1, n+1)] for n in range(1, 16)]) # G. C. Greubel, Sep 12 2024
CROSSREFS
KEYWORD
tabl,sign
AUTHOR
Gary W. Adamson, Aug 01 2008
STATUS
approved