Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
A144262
a(n) = smallest k such that k*n is not a Niven (or Harshad) number.
8
11, 7, 5, 4, 3, 11, 2, 2, 11, 13, 1, 8, 1, 1, 1, 1, 1, 161, 1, 8, 5, 1, 1, 4, 1, 1, 7, 1, 1, 13, 1, 1, 1, 1, 1, 83, 1, 1, 1, 4, 1, 4, 1, 1, 11, 1, 1, 2, 1, 5, 1, 1, 1, 537, 1, 1, 1, 1, 1, 83, 1, 1, 3, 1, 1, 1, 1, 1, 1, 5, 1, 68, 1, 1, 1, 1, 1, 1, 1, 2, 7, 1, 1, 2, 1, 1, 1, 1, 1, 211, 1, 1, 1, 1, 1, 1, 1, 1, 1
OFFSET
1,1
COMMENTS
Niven (or Harshad) numbers are numbers that can be divided by the sum of their digits.
If n is not a Niven number then a(n) is obviously 1. Some terms are rather large: a(108) = 3611, a(540) = 537037; see also A144375 and A144376.
Does a(n) exist for all n? - Klaus Brockhaus, Sep 19 2008
a(n) should exist for all n since the density of the Niven numbers is zero and it has been proved that arbitrarily large gaps exist between Niven numbers. [Sergio Pimentel, Sep 20 2008]
Let N be the number formed by concatenating R copies of n, where R is the smallest power of 10 that exceeds n. Then N is a multiple of n, but not a Niven number; since R divides the sum of the digits of N, but R does not divide N. - David Radcliffe, Oct 06 2014
LINKS
Eric Weisstein's World of Mathematics, Harshad Number
EXAMPLE
a(2) = 7 since 2, 4, 6, 8, 10 and 12 are all Niven numbers; but 7*2 = 14 is not.
MATHEMATICA
a[n_] := Module[{k = 1}, While[Divisible[k*n, Plus @@ IntegerDigits[k*n]], k++]; k]; Array[a, 100] (* Amiram Eldar, Sep 05 2020 *)
PROG
(PARI)
digitsum(n) = {local(s=0); while(n, s+=n%10; n\=10); s}
{for(n=1, 100, k=1; while((p=k*n)%digitsum(p)==0, k++); print1(k, ", "))} /* Klaus Brockhaus, Sep 19 2008 */
(Python)
def a(n):
kn = n
while kn % sum(map(int, str(kn))) == 0: kn += n
return kn//n
print([a(n) for n in range(1, 100)]) # Michael S. Branicky, Nov 07 2021
CROSSREFS
Cf. A005349 (Niven numbers), A144261 (smallest k such that k*n is a Niven number), A144375 (records in A144262), A144376 (where records occur in A144262).
Sequence in context: A155914 A087896 A240598 * A110093 A282345 A265765
KEYWORD
base,nonn
AUTHOR
Sergio Pimentel, Sep 16 2008
EXTENSIONS
Edited by Klaus Brockhaus, Sep 19 2008
STATUS
approved