OFFSET
0,5
LINKS
Laradji, A. and Umar, A. Combinatorial Results for Semigroups of Order-Decreasing Partial Transformations, Journal of Integer Sequences, Vol. 7 (2004), Article 04.3.8. [From Abdullahi Umar, Oct 07 2008]
FORMULA
T(n,k) = binomial(n,k)*binomial(2k-2,k-1)*(n-k+1)/n for n >= k >= 1; T(n,0) = 1.
T(n,n) = A000108(n-1) for n > 0.
EXAMPLE
T(3,2) = 4 because there are exactly 4 order-decreasing and order-preserving partial transformations (of a 3-chain) of width and waist both equal to 2, namely: (1,2)->(1,2), (1,3)->(1,2), (2,3)->(1,2), (2,3)->(2,2).
Table begins
1;
1, 1;
1, 2, 1;
1, 3, 4, 2;
1, 4, 9, 12, 5;
1, 5, 16, 36, 40, 14;
1, 6, 25, 80, 150, 140, 42;
1, 7, 36, 150, 400, 630, 504, 132;
1, 8, 49, 252, 875, 1960, 2646, 1848, 429;
1, 9, 64, 392, 1680, 4900, 9408, 11088, 6864, 1430;
1, 10, 81, 576, 2940, 10584, 26460, 44352, 46332, 25740, 4862;
MAPLE
A145034 := proc(n, k) if k = 0 then 1; else binomial(n, k)*binomial(2*k-2, k-1)*(n-k+1)/n ; end if; end proc: # R. J. Mathar, Jun 11 2011
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Abdullahi Umar, Sep 30 2008
STATUS
approved