Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
A161808
G.f.: A(q) = exp( Sum_{n>=1} A162552(n) * 3*A038500(n) * q^n/n ).
1
1, 3, 3, 3, 9, 12, 12, 27, 36, 57, 141, 165, 135, 321, 450, 399, 780, 1068, 1308, 2913, 3537, 2736, 5940, 8430, 7173, 13251, 18267, 17661, 35007, 45051, 31866, 58506, 85890, 65694, 102000, 145293, 101547, 140574, 203781, 114765, 93051, 161754
OFFSET
0,2
COMMENTS
A162552 forms the l.g.f. of log[ Sum_{n>=0} x^(n^2) ], and
A038500(n) is the highest power of 3 dividing n.
The first negative term is a(43) = -162729.
LINKS
Paul D. Hanna, Table of n, a(n) for n = 0..10000 (terms 0..100 from Georg Fischer)
EXAMPLE
G.f.: A(q) = 1 + 3*q + 3*q^2 + 3*q^3 + 9*q^4 + 12*q^5 + 12*q^6 +...
log(A(q)) = 3*q - 3*q^2/2 + 9*q^3/3 + 9*q^4/4 - 12*q^5/5 + 45*q^6/6 - 18*q^7/7 +...
Compare to: q - q^2/2 + q^3/3 + 3*q^4/4 - 4*q^5/5 + 5*q^6/6 - 6*q^7/7 +...
which equals log( Sum_{n>=0} q^(n^2) ) as described by A162552.
PROG
(PARI) {a(n)=local(Q=sum(m=0, n, x^(m^2))+x*O(x^n), A); A=exp(sum(k=1, n, polcoeff(log(Q), k)*3*3^valuation(k, 3)*x^k)+x*O(x^n)); polcoeff(A, n)}
CROSSREFS
Cf. A161804 (variant).
Sequence in context: A127975 A060828 A332337 * A188344 A217457 A231753
KEYWORD
sign
AUTHOR
Paul D. Hanna, Jul 21 2009
STATUS
approved