Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
A231753
T(n,k)=Number of nXk 0..2 arrays with no element less than a strict majority of its horizontal, vertical, diagonal and antidiagonal neighbors
7
3, 3, 3, 9, 15, 9, 22, 51, 51, 22, 51, 186, 589, 186, 51, 121, 687, 5106, 5106, 687, 121, 292, 2485, 41288, 101517, 41288, 2485, 292, 704, 9068, 397219, 1787168, 1787168, 397219, 9068, 704, 1691, 33308, 3745096, 36596191, 67411714, 36596191, 3745096
OFFSET
1,1
COMMENTS
Table starts
....3......3..........9............22................51................121
....3.....15.........51...........186...............687...............2485
....9.....51........589..........5106.............41288.............397219
...22....186.......5106........101517...........1787168...........36596191
...51....687......41288.......1787168..........67411714.........2966010838
..121...2485.....397219......36596191........2966010838.......309458955366
..292...9068....3745096.....764681711......131956285636.....31638510266609
..704..33308...34036486...15421779553.....5669387332934...3041193156650724
.1691.121445..313782748..309633476778...243573416110820.296576264769131499
.4059.444183.2927905037.6284893573378.10555475178328001
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 3*a(n-1) -3*a(n-2) +4*a(n-3) -a(n-4) +a(n-5) for n>6
k=2: [order 11]
k=3: [order 40] for n>41
EXAMPLE
Some solutions for n=4 k=4
..1..0..1..1....1..0..0..0....2..0..0..2....2..2..0..0....0..0..2..2
..0..0..0..2....0..0..0..1....1..0..0..0....1..0..0..0....0..1..0..0
..0..0..1..0....1..0..0..1....2..0..0..0....0..1..0..0....2..0..0..0
..1..0..0..0....1..0..0..0....2..1..0..0....0..0..0..1....2..0..0..0
CROSSREFS
Column 1 is A202882 for n>1
Sequence in context: A161808 A188344 A217457 * A231663 A180439 A298315
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Nov 13 2013
STATUS
approved