Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
A174824
a(n) = period of the sequence {m^m, m >= 1} modulo n.
20
1, 2, 6, 4, 20, 6, 42, 8, 18, 20, 110, 12, 156, 42, 60, 16, 272, 18, 342, 20, 42, 110, 506, 24, 100, 156, 54, 84, 812, 60, 930, 32, 330, 272, 420, 36, 1332, 342, 156, 40, 1640, 42, 1806, 220, 180, 506, 2162, 48, 294, 100, 816, 156, 2756, 54, 220, 168, 342
OFFSET
1,2
COMMENTS
This is a divisibility sequence: if n divides m, a(n) divides a(m).
We have the equality n = a(n) for numbers n in A124240, which is related to Carmichael's function (A002322). The largest values of a(n) occur when n is prime, in which case a(n) = n*(n-1). - T. D. Noe, Feb 21 2014
LINKS
José María Grau and Antonio M. Oller-Marcén, On the last digit and the last non-zero digit of n^n in base b, arXiv:1203.4066 [math.NT], 2012. (See page 3)
FORMULA
a(n) = lcm(n, A173614(n)) = lcm(n, A002322(n)) = lcm(n, A011773(n)).
If n and m are relatively prime, a(n*m) = lcm(a(n), a(m)); a(p^k) = (p-1)*p^k for p prime and k > 0.
a(n) = n*A268336(n). - M. F. Hasler, Nov 13 2019
EXAMPLE
For n=3, 1^1 == 1 (mod 3), 2^2 == 1 (mod 3), 3^3 == 0 (mod 3), etc. The sequence of residues 1, 1, 0, 1, 2, 0, 1, 1, 0, ... has period 6, so a(3) = 6. - Michael B. Porter, Mar 13 2018
MATHEMATICA
Table[LCM[n, CarmichaelLambda[n]], {n, 100}] (* T. D. Noe, Feb 20 2014 *)
PROG
(PARI) a(n)=local(ps); ps=factor(n)[, 1]~; for(k=1, #ps, n=lcm(n, ps[k]-1)); n
(PARI) a(n) = lcm(n, lcm(znstar(n)[2])); \\ Michel Marcus, Mar 18 2016; corrected by Michel Marcus, Nov 13 2019
(PARI) apply( {A174824(n)=lcm(lcm([p-1|p<-factor(n)[, 1]]), n)}, [1..99]) \\ [...] = znstar(n)[2], but 3x faster. - M. F. Hasler, Nov 13 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved