Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
A176997
Integers k such that 2^(k-1) == 1 (mod k).
13
1, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331
OFFSET
1,2
COMMENTS
Old definition was: Odd integers n such that 2^(n-1) == 4^(n-1) == 8^(n-1) == ... == k^(n-1) (mod n), where k = A062383(n). Dividing 2^(n-1) == 4^(n-1) (mod n) by 2^(n-1), we get 1 == 2^(n-1) (mod n), implying the current definition. - Max Alekseyev, Sep 22 2016
The union of {1}, the odd primes, and the Fermat pseudoprimes, i.e., {1} U A065091 U A001567. Also, the union of A006005 and A001567 (conjectured by Alois P. Heinz, Dec 10 2010). - Max Alekseyev, Sep 22 2016
These numbers were called "fermatians" by Shanks (1962). - Amiram Eldar, Apr 21 2024
REFERENCES
Daniel Shanks, Solved and Unsolved Problems in Number Theory, Spartan Books, Washington D.C., 1962.
LINKS
EXAMPLE
5 is in the sequence because 2^(5-1) == 4^(5-1) == 8^(5-1) == 1 (mod 5).
MATHEMATICA
m = 1; Join[Select[Range[m], Divisible[2^(# - 1) - m, #] &],
Select[Range[m + 1, 10^3], PowerMod[2, # - 1, #] == m &]] (* Robert Price, Oct 12 2018 *)
PROG
(PARI) isok(n) = Mod(2, n)^(n-1) == 1; \\ Michel Marcus, Sep 23 2016
(Python)
from itertools import count, islice
def A176997_gen(startvalue=1): # generator of terms >= startvalue
if startvalue <= 1:
yield 1
k = 1<<(s:=max(startvalue, 1))-1
for n in count(s):
if k % n == 1:
yield n
k <<= 1
A176997_list = list(islice(A176997_gen(), 30)) # Chai Wah Wu, Jun 30 2022
CROSSREFS
The odd terms of A015919.
Odd integers n such that 2^n == 2^k (mod n): this sequence (k=1), A173572 (k=2), A276967 (k=3), A033984 (k=4), A276968 (k=5), A215610 (k=6), A276969 (k=7), A215611 (k=8), A276970 (k=9), A215612 (k=10), A276971 (k=11), A215613 (k=12).
Sequence in context: A006005 A065091 A160656 * A240699 A065380 A211075
KEYWORD
nonn
AUTHOR
EXTENSIONS
Edited by Max Alekseyev, Sep 22 2016
STATUS
approved