Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
A200105
Decimal expansion of least x satisfying x^2 - 4*cos(x) = 4*sin(x), negated.
3
6, 9, 8, 9, 3, 3, 6, 0, 4, 7, 3, 2, 9, 0, 3, 3, 0, 9, 3, 3, 7, 9, 8, 9, 5, 4, 4, 7, 3, 3, 5, 6, 7, 9, 5, 6, 2, 3, 3, 5, 7, 2, 4, 8, 5, 1, 5, 7, 6, 1, 0, 5, 7, 8, 0, 2, 5, 6, 9, 3, 4, 7, 2, 6, 5, 4, 9, 7, 8, 8, 3, 8, 4, 7, 5, 3, 2, 4, 6, 6, 6, 4, 5, 4, 3, 4, 0, 8, 3, 2, 6, 4, 0, 4, 9, 2, 3, 4, 3
OFFSET
0,1
COMMENTS
See A199949 for a guide to related sequences. The Mathematica program includes a graph.
LINKS
EXAMPLE
least x: -0.698933604732903309337989544733567956233...
greatest x: 1.7695688743727017491150784620016277547...
MATHEMATICA
a = 1; b = -4; c = 4;
f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, -.7, -.6}, WorkingPrecision -> 110]
RealDigits[r] (* A200105 *)
r = x /. FindRoot[f[x] == g[x], {x, 1.76, 1.77}, WorkingPrecision -> 110]
RealDigits[r] (* A200106 *)
PROG
(PARI) a=1; b=-4; c=4; solve(x=-1, 0, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 25 2018
CROSSREFS
Cf. A199949.
Sequence in context: A133614 A255674 A019753 * A153268 A197847 A303046
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Nov 13 2011
STATUS
approved