Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
A201008
Triangular numbers, T(m), that are five-sixths of another triangular number: T(m) such that 6*T(m)=5*T(k) for some k.
6
0, 55, 26565, 12804330, 6171660550, 2974727580825, 1433812522297155, 691094661019647940, 333106192798948009980, 160556493834431921162475, 77387896922003387052303025, 37300805759911798127288895630
OFFSET
0,2
FORMULA
For n > 1, a(n) = 482*a(n-1) - a(n-2) + 55. See A200993 for generalization.
From Bruno Berselli, Dec 21 2011: (Start)
G.f.: 55*x/((1-x)*(1-482*x+x^2)).
a(n) = a(-n-1) = 483*a(n-1)-483*a(n-2)+a(n-3).
a(n) = ((11-2*r)^(2*n+1)+(11+2*r)^(2*n+1)-22)/192, where r=sqrt(30). (End)
EXAMPLE
6*0 = 5*0;
6*55 = 5*66;
6*26565 = 5*31878;
6*12804330 = 5*15365196.
MATHEMATICA
LinearRecurrence[{483, -483, 1}, {0, 55, 26565}, 30] (* Vincenzo Librandi, Dec 22 2011 *)
PROG
(Maxima) makelist(expand(((11-2*sqrt(30))^(2*n+1)+(11+2*sqrt(30))^(2*n+1)-22)/192), n, 0, 11); \* Bruno Berselli, Dec 21 2011 *\
(Magma) I:=[0, 55, 26565]; [n le 3 select I[n] else 483*Self(n-1)-483*Self(n-2)+Self(n-3): n in [1..15]]; // Vincenzo Librandi, Dec 22 2011
(PARI) concat(0, Vec(55/(1-x)/(1-482*x+x^2)+O(x^98))) \\ Charles R Greathouse IV, Dec 23 2011
KEYWORD
nonn,easy,changed
AUTHOR
Charlie Marion, Dec 20 2011
EXTENSIONS
a(11) corrected by Bruno Berselli, Dec 21 2011
a(6) corrected by Vincenzo Librandi, Dec 22 2011
STATUS
approved