Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
A203678
v(n+1)/v(n), where v=A203677.
2
17, 7954, 23557648, 249581834276, 6985971879768576, 428313101742584476552, 50648802606721926260916224, 10537561069087080809570265074448, 3598422455223499123258044906373120000, 1910287477970606754101128649923632473220896
OFFSET
1,1
COMMENTS
See A093883 for a discussion and guide to related sequences.
FORMULA
a(n) ~ 2^(n + 1/2) * (1 + sqrt(2))^(sqrt(2)*(n+1)) * exp((n+1)*Pi/sqrt(2) - 4*n) * n^(4*n). - Vaclav Kotesovec, Sep 08 2023
MATHEMATICA
f[j_] := j^2; z = 12;
u[n_] := Product[f[j]^2 + f[k]^2, {j, 1, k - 1}]
v[n_] := Product[u[n], {k, 2, n}]
Table[v[n], {n, 1, z}] (* A203677 *)
Table[v[n + 1]/v[n], {n, 1, z}] (* A203678 *)
Table[Product[k^4 + (n + 1)^4, {k, 1, n}], {n, 1, 12}] (* Vaclav Kotesovec, Sep 08 2023 *)
CROSSREFS
Sequence in context: A198533 A192766 A166326 * A257044 A114924 A362066
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jan 04 2012
STATUS
approved