Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A243262
Decimal expansion of the generalized Glaisher-Kinkelin constant A(2).
30
1, 0, 3, 0, 9, 1, 6, 7, 5, 2, 1, 9, 7, 3, 9, 2, 1, 1, 4, 1, 9, 3, 3, 1, 3, 0, 9, 6, 4, 6, 6, 9, 4, 2, 2, 9, 0, 6, 3, 3, 1, 9, 4, 3, 0, 6, 4, 0, 3, 4, 8, 7, 0, 6, 0, 2, 2, 7, 2, 6, 1, 7, 4, 1, 1, 4, 5, 1, 6, 6, 0, 6, 6, 9, 7, 8, 2, 9, 0, 4, 0, 5, 2, 9, 2, 9, 3, 1, 3, 6, 2, 5, 5, 4, 8, 0, 8, 8, 5
OFFSET
1,3
COMMENTS
Also known as the second Bendersky constant.
This is likely the same as the constant B considered in section 3 of the Choi and Srivastava link. - R. J. Mathar, Oct 03 2016
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.15 Glaisher-Kinkelin constant, p. 137.
LINKS
J. Choi and H. M. Srivastava, Certain classes of series involving the zeta function, J. Math. Annal. Applic. 231 (1999) 91-117.
K. Kimoto, N. Kurokawa, C. Sonoki, M. Wakayama, Some examples of generalized zeta regularized products, Kodai Math. J. 27 (2004), 321-335.
Tobias Kyrion, A closed-form expression for zeta(3), arXiv:2008.05573 [math.GM], 2020.
Eric Weisstein's MathWorld, Glaisher-Kinkelin Constant
FORMULA
A(k) = exp(B(k+1)/(k+1)*H(k)-zeta'(-k)), where B(k) is the k-th Bernoulli number and H(k) the k-th harmonic number.
A(0) = sqrt(2*Pi) (A019727),
A(1) = A = Glaisher-Kinkelin constant (A074962),
A(2) = exp(-zeta'(-2)) = exp(zeta(3)/(4*Pi^2)).
Equals exp(-A240966). - Vaclav Kotesovec, Feb 22 2015
EXAMPLE
1.03091675219739211419331309646694229...
MATHEMATICA
RealDigits[Exp[Zeta[3]/(4*Pi^2)], 10, 99] // First
RealDigits[Exp[N[(BernoulliB[2]/4)*(Zeta[3]/Zeta[2]), 200]]]//First (* G. C. Greubel, Dec 31 2015 *)
PROG
(PARI) exp(zeta(3)/(4*Pi^2)) \\ Felix Fröhlich, Jun 27 2019
KEYWORD
nonn,cons
AUTHOR
STATUS
approved