Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Search: a243262 -id:a243262
     Sort: relevance | references | number | modified | created      Format: long | short | data
Decimal expansion of Glaisher-Kinkelin constant A.
+10
447
1, 2, 8, 2, 4, 2, 7, 1, 2, 9, 1, 0, 0, 6, 2, 2, 6, 3, 6, 8, 7, 5, 3, 4, 2, 5, 6, 8, 8, 6, 9, 7, 9, 1, 7, 2, 7, 7, 6, 7, 6, 8, 8, 9, 2, 7, 3, 2, 5, 0, 0, 1, 1, 9, 2, 0, 6, 3, 7, 4, 0, 0, 2, 1, 7, 4, 0, 4, 0, 6, 3, 0, 8, 8, 5, 8, 8, 2, 6, 4, 6, 1, 1, 2, 9, 7, 3, 6, 4, 9, 1, 9, 5, 8, 2, 0, 2, 3, 7, 4, 3, 9, 4, 2, 0, 6, 4, 6, 1, 2, 0
OFFSET
1,2
COMMENTS
Arises in expressions such as A002109(n) = 1^1*2^2*3^3*...*n^n which is asymptotic to A*n^(n^2/2 + n/2 + 1/12)*exp(-n^2/4). See A002109 for more references and links.
Named after the English mathematician and astronomer James Whitbread Lee Glaisher (1848-1928) and the Swiss mathematician Hermann Kinkelin (1832-1913). - Amiram Eldar, Jun 15 2021
REFERENCES
Steven R. Finch, Mathematical constants, Encyclopedia of Mathematics and its Applications, Vol. 94, Cambridge University Press, 2003, p. 135.
Konrad Knopp, Theory and applications of infinite series, Dover, p. 555.
LINKS
Chao-Ping Chen and Long Lin, Asymptotic expansions related to Glaisher-Kinkelin constant based on the Bell polynomials, Journal of Number Theory, Vol. 133 (2013), pp. 2699-2705.
Ovidiu Furdui, proposer, Problem 11494, Amer. Math. Monthly, Vol. 118, No. 9 (2011), 850-852.
J. W. L. Glaisher, On the Product 1^1.2^2.3^3...n^n, The Messenger of Mathematics, Vol. 7 (1878), pp. 43-47.
Jesús Guillera and Jonathan Sondow, Double integrals and infinite products for some classical constants via analytic continuations of Lerch's transcendent, Ramanujan J., Vol. 16 (2008), pp. 247-270; see Examples 5.2, 5.7, 5.11.
Fredrik Johansson et al., mpmath, Mathematical constants (Mpmath).
Fredrik Johansson et al., mpmath, Glaisher's constant to 20,000 digits.
Hermann Kinkelin, Über eine mit der Gammafunction verwandte Transcendente und deren Anwendung auf die Integralrechnung, Journal für die reine und angewandte Mathematik, Vol. 57 (1860), pp. 122-138.
Jonathan Sondow and Petros Hadjicostas, The generalized-Euler-constant function gamma(z) and a generalization of Somos's quadratic recurrence constant, J. Math. Anal. Appl., Vol. 332, No. 1 (2007), pp. 292-314; see Section 5.
Robert A. Van Gorder, Glaisher-type products over the primes, International Journal of Number Theory, Vol. 8, No. 2 (2012), pp. 543-550.
Eric Weisstein's World of Mathematics, Glaisher-Kinkelin Constant.
FORMULA
A = 2^(1/36)*Pi^(1/6)*exp(1/3*(-Gamma/4 + s(2)/3 - s(3)/4 + ...)) where s(k) denotes Sum_{n>=0} 1/(2n+1)^k.
Closed expressions for A are exp(-zeta'(2)/2/Pi^2 + log(2*Pi)/12 + Gamma/12) or exp(1/12-zeta'(-1)).
Equals (2*Pi)^(1/4) / limit_{n->oo} Product_{k=1..n} Gamma(k/n)^(k/n^2). - Vaclav Kotesovec, Dec 02 2023
Equals (2*Pi*exp(gamma) * Product_{p prime} p^(1/(p^4-1)))^c, where gamma is Euler's constant (A001620), and c = Bernoulli(2)/2 = 1/12 (Van Gorder, 2012). - Amiram Eldar, Feb 08 2024
Equals e^(-1/4 + Integral_{x=1..2} x*log(sqrt(2*Pi)) - B_2(x) + x^2*Psi(x)/2 dx), where B_2(x) is the second Bernoulli polynomial and Psi(x) is the digamma function. - Andrea Pinos, Apr 16 2024
Equals Product_{k>=1} 2^(10^(-k) + 3/13^k)((2*k)/(2*k + 1))^((k/3 + 1/12))((2*k + 2)/(2*k + 1))^((k/3 + 1/4)). - Antonio Graciá Llorente, May 20 2024
Equals exp(1/12 - 2*Integral_{x=0..oo} x*log(x)/(exp(2*Pi*x) - 1) dx) = exp(1/3 + 7*log(2)/36 - log(Pi)/6 + (2/3)*Integral_{x=0..1/2} log(Gamma(x+1)) dx) (see Finch). - Stefano Spezia, Dec 01 2024
EXAMPLE
1.2824271291006226368753425688697917277676889273250011920637400217404...
MAPLE
evalf(limit(product(k^k, k=1..n)/(n^(n^2/2+n/2+1/12)*exp(-n^2/4)), n=infinity), 120); # Vaclav Kotesovec, Oct 23 2014
MATHEMATICA
RealDigits[Glaisher, 10, 111][[1]] (* Robert G. Wilson v *)
PROG
(PARI) x=10^(-100); exp(1/12-(zeta(-1+x)-zeta(-1))/x)
(PARI) exp(1/12-zeta'(-1)) \\ Charles R Greathouse IV, Dec 12 2013
KEYWORD
nonn,cons,nice
AUTHOR
Benoit Cloitre, Oct 05 2002
EXTENSIONS
More terms from Sascha Kurz, Feb 03 2003
STATUS
approved
Decimal expansion of the generalized Glaisher-Kinkelin constant A(3).
+10
31
9, 7, 9, 5, 5, 5, 5, 2, 6, 9, 4, 2, 8, 4, 4, 6, 0, 5, 8, 2, 4, 2, 1, 8, 8, 3, 7, 2, 6, 3, 4, 9, 1, 8, 2, 6, 4, 4, 5, 5, 3, 6, 7, 5, 2, 4, 9, 5, 5, 2, 9, 9, 0, 2, 2, 5, 7, 7, 1, 7, 1, 4, 2, 7, 9, 7, 5, 8, 8, 5, 6, 7, 2, 4, 8, 1, 5, 5, 9, 6, 1, 4, 9, 4, 4, 4, 4, 4, 3, 5, 3, 8, 3, 3, 2, 1, 9, 6
OFFSET
0,1
COMMENTS
Also known as the third Bendersky constant.
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.15 Glaisher-Kinkelin constant, p. 137.
LINKS
Victor S. Adamchik, Polygamma functions of negative order, Journal of Computational and Applied Mathematics, Vol. 100, No. 2 (1998), pp. 191-199.
L. Bendersky, Sur la fonction gamma généralisée, Acta Mathematica , Vol. 61 (1933), pp. 263-322; alternative link.
Robert A. Van Gorder, Glaisher-type products over the primes, International Journal of Number Theory, Vol. 8, No. 2 (2012), pp. 543-550.
Eric Weisstein's MathWorld, Glaisher-Kinkelin Constant.
FORMULA
A(k) = exp(B(k+1)/(k+1)*H(k) - zeta'(-k)), where B(k) is the k-th Bernoulli number and H(k) the k-th harmonic number.
A(3) = exp(-11/720 - zeta'(-3)).
Equals exp(3*zeta'(4)/(4*Pi^4) - gamma/120) / (2*Pi)^(1/120), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Jul 24 2015
Equals (2*Pi*exp(gamma) * Product_{p prime} p^(1/(p^4-1)))^c, where gamma is Euler's constant (A001620), and c = Bernoulli(4)/4 = -1/120 (Van Gorder, 2012). - Amiram Eldar, Feb 08 2024
EXAMPLE
0.97955552694284460582421883726349...
MATHEMATICA
RealDigits[Exp[-11/720 - Zeta'[-3]], 10, 98] // First
RealDigits[Exp[(BernoulliB[4]/4) * (EulerGamma + Log[2 * Pi] - (Zeta'[4]/Zeta[4]))], 10, 100] // First (* G. C. Greubel, Dec 31 2015 *)
PROG
(PARI) exp(-11/720 - zeta'(-3)) \\ Stefano Spezia, Dec 01 2024
KEYWORD
nonn,cons
AUTHOR
STATUS
approved
Decimal expansion of the generalized Glaisher-Kinkelin constant A(4).
+10
28
9, 9, 2, 0, 4, 7, 9, 7, 4, 5, 2, 5, 0, 4, 0, 2, 6, 0, 0, 1, 3, 4, 3, 6, 9, 7, 7, 6, 2, 5, 4, 4, 3, 3, 5, 6, 7, 3, 6, 9, 0, 4, 8, 5, 1, 2, 7, 6, 1, 8, 8, 0, 8, 9, 3, 5, 2, 0, 9, 4, 6, 1, 4, 9, 1, 5, 5, 4, 1, 4, 5, 3, 8, 5, 3, 8, 9, 4, 5, 9, 7, 6, 1, 8, 0, 5, 7, 7, 3, 6, 1, 7, 2, 9, 5, 6, 4, 3
OFFSET
0,1
COMMENTS
Also known as the 4th Bendersky constant.
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.15 Glaisher-Kinkelin constant, p. 137.
LINKS
Eric Weisstein's MathWorld, Glaisher-Kinkelin Constant.
FORMULA
A(k) = exp(B(k+1)/(k+1)*H(k)-zeta'(-k)), where B(k) is the k-th Bernoulli number and H(k) the k-th harmonic number.
A(4) = exp(-zeta'(-4)) = exp(-3*zeta(5)/(4*Pi^4)).
A(4) = exp((B(4)/4)*(zeta(5)/zeta(4))). - G. C. Greubel, Dec 31 2015
EXAMPLE
0.9920479745250402600134369776254433567369...
MATHEMATICA
RealDigits[Exp[-3*Zeta[5]/(4*Pi^4)], 10, 98] // First
RealDigits[Exp[N[(BernoulliB[4]/4)*(Zeta[5]/Zeta[4]), 100]]] // First (* G. C. Greubel, Dec 31 2015 *)
PROG
(PARI) exp(-3*zeta(5)/(4*Pi^4)) \\ Stefano Spezia, Dec 01 2024
KEYWORD
nonn,cons
AUTHOR
STATUS
approved
Decimal expansion of the generalized Glaisher-Kinkelin constant A(5).
+10
27
1, 0, 0, 9, 6, 8, 0, 3, 8, 7, 2, 8, 5, 8, 6, 6, 1, 6, 1, 1, 2, 0, 0, 8, 9, 1, 9, 0, 4, 6, 2, 6, 3, 0, 6, 9, 2, 6, 0, 3, 2, 7, 6, 3, 4, 7, 2, 1, 1, 5, 2, 4, 9, 1, 8, 4, 6, 0, 9, 2, 4, 7, 2, 1, 5, 6, 2, 3, 0, 1, 4, 2, 5, 0, 0, 3, 4, 1, 0, 0, 3, 2, 7, 7, 0, 1, 5, 0, 5, 6, 5, 9, 6, 5, 2, 7, 6, 4, 5, 5, 5, 9, 4
OFFSET
1,4
COMMENTS
Also known as the 5th Bendersky constant.
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.15 Glaisher-Kinkelin constant, p. 137.
LINKS
Victor S. Adamchik, Polygamma functions of negative order, Journal of Computational and Applied Mathematics, Vol. 100, No. 2 (1998), pp. 191-199.
L. Bendersky, Sur la fonction gamma généralisée, Acta Mathematica , Vol. 61 (1933), pp. 263-322; alternative link.
Robert A. Van Gorder, Glaisher-type products over the primes, International Journal of Number Theory, Vol. 8, No. 2 (2012), pp. 543-550.
Eric Weisstein's MathWorld, Glaisher-Kinkelin Constant.
FORMULA
A(k) = exp(B(k+1)/(k+1)*H(k)-zeta'(-k)), where B(k) is the k-th Bernoulli number and H(k) the k-th harmonic number.
A(5) = exp(137/15120-zeta'(-5)).
Equals exp(gamma/252 - 15*Zeta'(6)/(4*Pi^6)) * (2*Pi)^(1/252), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Jul 25 2015
Equals (2*Pi*exp(gamma) * Product_{p prime} p^(1/(p^6-1)))^c, where gamma is Euler's constant (A001620), and c = Bernoulli(6)/6 = 1/252 (Van Gorder, 2012). - Amiram Eldar, Feb 08 2024
EXAMPLE
1.00968038728586616112008919046263...
MATHEMATICA
RealDigits[Exp[137/15120-Zeta'[-5]], 10, 103] // First
RealDigits[Exp[N[(BernoulliB[6]/6)*(EulerGamma + Log[2*Pi] - Zeta'[6]/Zeta[6]), 200]]]//First (* G. C. Greubel, Dec 31 2015 *)
PROG
(PARI) exp(137/15120-zeta'(-5)) \\ Stefano Spezia, Dec 01 2024
KEYWORD
nonn,cons
AUTHOR
STATUS
approved
Decimal expansion of zeta'(-2) (the derivative of Riemann's zeta function at -2).
+10
23
0, 3, 0, 4, 4, 8, 4, 5, 7, 0, 5, 8, 3, 9, 3, 2, 7, 0, 7, 8, 0, 2, 5, 1, 5, 3, 0, 4, 7, 1, 1, 5, 4, 7, 7, 6, 6, 4, 7, 0, 0, 0, 4, 8, 3, 5, 4, 4, 9, 7, 3, 9, 3, 6, 2, 5, 2, 9, 7, 1, 8, 8, 9, 8, 5, 9, 0, 3, 7, 8, 1, 7, 9, 4, 4, 9, 3, 6, 8, 9, 8, 6, 7, 7, 7, 9, 4, 5, 8, 4, 8, 8, 0, 8, 7, 4, 4, 9, 5, 9, 7, 0, 3, 6
OFFSET
0,2
LINKS
FORMULA
zeta'(-2) = -zeta(3)/(4*Pi^2).
Equals -log(A243262). - Vaclav Kotesovec, Feb 22 2015
EXAMPLE
-0.030448457058393270780251530471154776647000483544973936252971889859...
MATHEMATICA
Join[{0}, RealDigits[-Zeta[3]/(4*Pi^2), 10, 103] // First]
CROSSREFS
Cf. A084448 (zeta'(-1)), A075700 (zeta'(0)), A073002 (zeta'(2)), A244115 (zeta'(3)).
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved
Decimal expansion of the generalized Glaisher-Kinkelin constant A(13).
+10
20
1, 2, 2, 2, 9, 4, 4, 2, 5, 1, 8, 0, 8, 1, 3, 3, 8, 7, 2, 6, 4, 7, 8, 9, 9, 9, 6, 0, 7, 2, 7, 7, 1, 7, 9, 8, 8, 5, 6, 1, 2, 6, 5, 8, 0, 3, 1, 2, 9, 5, 3, 2, 9, 5, 0, 1, 0, 8, 3, 7, 2, 8, 1, 0, 3, 4, 4, 6, 0, 6, 4, 2, 2, 7, 6, 8, 6, 6, 2, 0, 3, 0, 3, 0, 0, 1, 2, 6, 4, 2, 6, 9, 2, 1, 7, 5, 1, 1, 4, 2, 6, 1, 2, 4, 4, 9, 1, 8, 3, 6, 0, 0, 2, 0, 9
OFFSET
1,2
COMMENTS
Also known as the thirteenth Bendersky constant.
LINKS
Victor S. Adamchik, Polygamma functions of negative order, Journal of Computational and Applied Mathematics, Vol. 100, No. 2 (1998), pp. 191-199.
L. Bendersky, Sur la fonction gamma généralisée, Acta Mathematica , Vol. 61 (1933), pp. 263-322; alternative link.
Robert A. Van Gorder, Glaisher-type products over the primes, International Journal of Number Theory, Vol. 8, No. 2 (2012), pp. 543-550.
Eric Weisstein's World of Mathematics, Glaisher-Kinkelin Constant.
FORMULA
A(k) = exp(H(k)*B(k+1)/(k+1) - zeta'(-k)), where B(k) is the k-th Bernoulli number, H(k) the k-th Harmonic number, and zeta'(x) is the derivative of the Riemann zeta function.
A(13) = exp((1/14)*HarmonicNumber(13)*Bernoulli(14) - RiemannZeta'(-13)).
A(13) = exp((B(14)/14)*(EulerGamma + Log(2*Pi) - (zeta'(14)/zeta(14)))).
Equals (2*Pi*exp(gamma) * Product_{p prime} p^(1/(p^14-1)))^c, where gamma is Euler's constant (A001620), and c = Bernoulli(14)/14 = 1/12 (Van Gorder, 2012). - Amiram Eldar, Feb 08 2024
EXAMPLE
1.2229442518081338726478999607277179885...
MATHEMATICA
N[Exp[(1/14)*HarmonicNumber[13]*BernoulliB[14] - Zeta'[-13]], 100]
Exp[N[(BernoulliB[14]/14)*(EulerGamma + Log[2*Pi] - Zeta'[14]/Zeta[14]), 200]]
CROSSREFS
Cf. A019727 (A(0)), A074962 (A(1)), A243262 (A(2)), A243263 (A(3)), A243264 (A(4)), A243265 (A(5)), A266553 (A(6)), A266554 (A(7)), A266555 (A(8)), A266556 (A(9)), A266557 (A(10)), A266558 (A(11)), A266559 (A(12)), A260662 (A(13)), A266560 (A(14)), A266562 (A(15)), A266563 (A(16)), A266564 (A(17)), A266565 (A(18)), A266566 (A(19)), A266567 (A(20)).
KEYWORD
nonn,cons,easy
AUTHOR
G. C. Greubel, Nov 13 2015
STATUS
approved
Decimal expansion of the generalized Glaisher-Kinkelin constant A(7).
+10
20
9, 8, 9, 9, 7, 5, 6, 5, 3, 3, 3, 3, 4, 1, 7, 0, 9, 4, 1, 7, 5, 3, 9, 6, 4, 8, 3, 0, 5, 8, 8, 6, 9, 2, 0, 0, 2, 0, 8, 2, 4, 7, 1, 5, 1, 4, 3, 0, 7, 4, 5, 3, 0, 5, 1, 2, 8, 5, 5, 3, 8, 6, 2, 4, 2, 3, 7, 7, 4, 6, 4, 2, 9, 5, 9, 6, 1, 6, 7, 5, 7, 4, 2, 7, 5, 6, 6, 8, 7, 7, 6, 3, 6
OFFSET
0,1
COMMENTS
Also known as the 7th Bendersky constant.
LINKS
Victor S. Adamchik, Polygamma functions of negative order, Journal of Computational and Applied Mathematics, Vol. 100, No. 2 (1998), pp. 191-199.
L. Bendersky, Sur la fonction gamma généralisée, Acta Mathematica , Vol. 61 (1933), pp. 263-322; alternative link.
Robert A. Van Gorder, Glaisher-type products over the primes, International Journal of Number Theory, Vol. 8, No. 2 (2012), pp. 543-550.
Eric Weisstein's World of Mathematics, Glaisher-Kinkelin Constant.
FORMULA
A(k) = exp(H(k)*B(k+1)/(k+1) - zeta'(-k)), where B(k) is the k-th Bernoulli number, H(k) the k-th harmonic number, and zeta'(x) is the derivative of the Riemann zeta function.
A(7) = exp(H(7)*B(8)/8 - zeta'(-7)) = exp((B(8)/8)*(EulerGamma + log(2*Pi) - (zeta'(8)/zeta(8)))).
Equals (2*Pi*exp(gamma) * Product_{p prime} p^(1/(p^8-1)))^c, where gamma is Euler's constant (A001620), and c = Bernoulli(8)/8 = -1/240 (Van Gorder, 2012). - Amiram Eldar, Feb 08 2024
EXAMPLE
0.9899756533334170941753964830588692002082471514307453051285538624....
MATHEMATICA
Exp[N[(BernoulliB[8]/8)*(EulerGamma + Log[2*Pi] - Zeta'[8]/Zeta[8]), 200]]
CROSSREFS
Cf. A019727 (A(0)), A074962 (A(1)), A243262 (A(2)), A243263 (A(3)), A243264 (A(4)), A243265 (A(5)), A266553 (A(6)), A266555 (A(8)), A266556 (A(9)), A266557 (A(10)), A266558 (A(11)), A266559 (A(12)), A260662 (A(13)), A266560 (A(14)), A266562 (A(15)), A266563 (A(16)), A266564 (A(17)), A266565 (A(18)), A266566 (A(19)), A266567 (A(20)).
KEYWORD
nonn,cons
AUTHOR
G. C. Greubel, Dec 31 2015
STATUS
approved
Decimal expansion of the generalized Glaisher-Kinkelin constant A(9).
+10
20
1, 0, 1, 8, 4, 6, 9, 9, 2, 9, 9, 2, 0, 9, 9, 2, 9, 1, 2, 1, 7, 0, 6, 5, 9, 0, 4, 9, 3, 7, 6, 6, 7, 2, 1, 7, 2, 3, 0, 8, 6, 1, 0, 1, 9, 0, 5, 6, 4, 0, 7, 4, 9, 2, 0, 3, 8, 0, 0, 7, 0, 5, 7, 3, 6, 7, 5, 4, 7, 6, 1, 9, 4, 9, 4
OFFSET
1,4
COMMENTS
Also known as the 9th Bendersky constant.
LINKS
Victor S. Adamchik, Polygamma functions of negative order, Journal of Computational and Applied Mathematics, Vol. 100, No. 2 (1998), pp. 191-199.
L. Bendersky, Sur la fonction gamma généralisée, Acta Mathematica , Vol. 61 (1933), pp. 263-322; alternative link.
Robert A. Van Gorder, Glaisher-type products over the primes, International Journal of Number Theory, Vol. 8, No. 2 (2012), pp. 543-550.
Eric Weisstein's World of Mathematics, Glaisher-Kinkelin Constant.
FORMULA
A(k) = exp(H(k)*B(k+1)/(k+1) - zeta'(-k)), where B(k) is the k-th Bernoulli number, H(k) the k-th harmonic number, and zeta'(x) is the derivative of the Riemann zeta function.
A(9) = exp(H(9)*B(10)/10 - zeta'(-9)) = exp((B(10)/10)*(EulerGamma + log(2*Pi) - (zeta'(10)/zeta(10)))).
Equals (2*Pi*exp(gamma) * Product_{p prime} p^(1/(p^10-1)))^c, where gamma is Euler's constant (A001620), and c = Bernoulli(10)/10 = 1/132 (Van Gorder, 2012). - Amiram Eldar, Feb 08 2024
EXAMPLE
1.018469929920992912170659049376672172308610190564074920380...
MATHEMATICA
Exp[N[(BernoulliB[10]/10)*(EulerGamma + Log[2*Pi] - Zeta'[10]/Zeta[10]), 200]]
CROSSREFS
Cf. A019727 (A(0)), A074962 (A(1)), A243262 (A(2)), A243263 (A(3)), A243264 (A(4)), A243265 (A(5)), A266553 (A(6)), A266554 (A(7)), A266555 (A(8)), A266556 (A(9)), A266557 (A(10)), A266558 (A(11)), A266559 (A(12)), A260662 (A(13)), A266560 (A(14)), A266562 (A(15)), A266563 (A(16)), A266564 (A(17)), A266565 (A(18)), A266566 (A(19)), A266567 (A(20)).
KEYWORD
nonn,cons
AUTHOR
G. C. Greubel, Dec 31 2015
STATUS
approved
Decimal expansion of the generalized Glaisher-Kinkelin constant A(11).
+10
20
9, 5, 0, 3, 3, 1, 2, 4, 8, 4, 5, 3, 2, 8, 8, 8, 6, 6, 5, 1, 4, 2, 3, 3, 8, 4, 1, 0, 1, 5, 3, 3, 1, 2, 7, 1, 5, 9, 7, 5, 6, 6, 4, 0, 3, 4, 5, 6, 1, 7, 3, 0, 4, 0, 8, 6, 1, 0, 8, 8, 8, 8, 1, 1, 6, 2, 2, 9, 7, 8, 4, 9, 1, 7, 7, 3, 4, 4, 4, 5, 1
OFFSET
0,1
COMMENTS
Also known as the 11th Bendersky constant.
LINKS
Victor S. Adamchik, Polygamma functions of negative order, Journal of Computational and Applied Mathematics, Vol. 100, No. 2 (1998), pp. 191-199.
L. Bendersky, Sur la fonction gamma généralisée, Acta Mathematica , Vol. 61 (1933), pp. 263-322; alternative link.
Robert A. Van Gorder, Glaisher-type products over the primes, International Journal of Number Theory, Vol. 8, No. 2 (2012), pp. 543-550.
Eric Weisstein's World of Mathematics, Glaisher-Kinkelin Constant.
FORMULA
A(k) = exp(H(k)*B(k+1)/(k+1) - zeta'(-k)), where B(k) is the k-th Bernoulli number, H(k) the k-th harmonic number, and zeta'(x) is the derivative of the Riemann zeta function.
A(11) = exp(H(11)*B(12)/12 - zeta'(-11)) = exp((B(12)/12)*(EulerGamma + log(2*Pi) - (zeta'(12)/zeta(12)))).
Equals (2*Pi*exp(gamma) * Product_{p prime} p^(1/(p^12-1)))^c, where gamma is Euler's constant (A001620), and c = Bernoulli(12)/12 = -691/32760 (Van Gorder, 2012). - Amiram Eldar, Feb 08 2024
EXAMPLE
0.950331248453288866514233841015331271597566403456173040861088881...
MATHEMATICA
Exp[N[(BernoulliB[12]/12)*(EulerGamma + Log[2*Pi] - Zeta'[12]/Zeta[12]), 200]]
CROSSREFS
Cf. A019727 (A(0)), A074962 (A(1)), A243262 (A(2)), A243263 (A(3)), A243264 (A(4)), A243265 (A(5)), A266553 (A(6)), A266554 (A(7)), A266555 (A(8)), A266556 (A(9)), A266557 (A(10)), A266559 (A(12)), A260662 (A(13)), A266560 (A(14)), A266562 (A(15)), A266563 (A(16)), A266564 (A(17)), A266565 (A(18)), A266566 (A(19)), A266567 (A(20)).
KEYWORD
nonn,cons
AUTHOR
G. C. Greubel, Dec 31 2015
STATUS
approved
Decimal expansion of the generalized Glaisher-Kinkelin constant A(15).
+10
20
3, 4, 2, 8, 3, 0, 8, 0, 6, 1, 3, 2, 8, 1, 6, 7, 3, 6, 5, 7, 1, 7, 1, 1, 1, 4, 6, 3, 4, 0, 6, 7, 2, 3, 7, 8, 1, 4, 1, 7, 2, 6, 9, 4, 5, 4, 8, 3, 2, 3, 6, 8, 7, 7, 2, 5, 1, 0, 7, 6, 1, 6, 4, 2, 4, 1, 9, 2, 6, 5, 5, 3, 5, 8, 7, 9, 7, 1, 1, 2, 8, 5, 2, 1, 3, 8, 4, 9, 6, 0, 2, 5, 9, 3
OFFSET
0,1
COMMENTS
Also known as the 15th Bendersky constant.
LINKS
Victor S. Adamchik, Polygamma functions of negative order, Journal of Computational and Applied Mathematics, Vol. 100, No. 2 (1998), pp. 191-199.
L. Bendersky, Sur la fonction gamma généralisée, Acta Mathematica , Vol. 61 (1933), pp. 263-322; alternative link.
Robert A. Van Gorder, Glaisher-type products over the primes, International Journal of Number Theory, Vol. 8, No. 2 (2012), pp. 543-550.
Eric Weisstein's World of Mathematics, Glaisher-Kinkelin Constant.
FORMULA
A(k) = exp(H(k)*B(k+1)/(k+1) - zeta'(-k)), where B(k) is the k-th Bernoulli number, H(k) the k-th harmonic number, and zeta'(x) is the derivative of the Riemann zeta function.
A(15) = exp(H(15)*B(16)/16 - zeta'(-15)) = exp((B(16)/16)*(EulerGamma + log(2*Pi) - (zeta'(16)/zeta(16))).
Equals (2*Pi*exp(gamma) * Product_{p prime} p^(1/(p^16-1)))^c, where gamma is Euler's constant (A001620), and c = Bernoulli(16)/16 = -3617/8160 (Van Gorder, 2012). - Amiram Eldar, Feb 08 2024
EXAMPLE
0.342830806132816736571711146340672378141726945483236877251076164....
MATHEMATICA
Exp[N[(BernoulliB[16]/16)*(EulerGamma + Log[2*Pi] - Zeta'[16]/Zeta[16]), 200]]
CROSSREFS
Cf. A019727 (A(0)), A074962 (A(1)), A243262 (A(2)), A243263 (A(3)), A243264 (A(4)), A243265 (A(5)), A266553 (A(6)), A266554 (A(7)), A266555 (A(8)), A266556 (A(9)), A266557 (A(10)), A266558 (A(11)), A266559 (A(12)), A260662 (A(13)), A266560 (A(14)), A266563 (A(16)), A266564 (A(17)), A266565 (A(18)), A266566 (A(19)), A266567 (A(20)).
KEYWORD
nonn,cons
AUTHOR
G. C. Greubel, Dec 31 2015
STATUS
approved

Search completed in 0.017 seconds