Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

Revision History for A260662

(Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
Decimal expansion of the generalized Glaisher-Kinkelin constant A(13).
(history; published version)
#42 by Michel Marcus at Thu Feb 08 22:31:33 EST 2024
STATUS

reviewed

approved

#41 by Andrew Howroyd at Thu Feb 08 21:56:07 EST 2024
STATUS

proposed

reviewed

#40 by Robert C. Lyons at Thu Feb 08 18:05:43 EST 2024
STATUS

editing

proposed

#39 by Robert C. Lyons at Thu Feb 08 18:05:41 EST 2024
FORMULA

A(k) = exp(H(k)*B(k+1)/(k+1) - zeta'(-k)), where B(k) is the k-th Bernoulli number, H(k) the k-th Harmonic number, and zeta'(x) is the derivative of the Riemann Zeta zeta function.

STATUS

approved

editing

#38 by Michel Marcus at Thu Feb 08 01:56:17 EST 2024
STATUS

reviewed

approved

#37 by Joerg Arndt at Thu Feb 08 01:15:12 EST 2024
STATUS

proposed

reviewed

#36 by Amiram Eldar at Thu Feb 08 00:40:03 EST 2024
STATUS

editing

proposed

#35 by Amiram Eldar at Thu Feb 08 00:20:20 EST 2024
LINKS

Victor S. Adamchik, <a href="https://doi.org/10.1016/S0377-0427(98)00192-7">Polygamma functions of negative order</a>, Journal of Computational and Applied Mathematics, Vol. 100, No. 2 (1998), pp. 191-199.

L. Bendersky, <a href="https://doi.org/10.1007/BF02547794">Sur la fonction gamma généralisée</a>, Acta Mathematica , Vol. 61 (1933), pp. 263-322; <a href="https://projecteuclid.org/journals/acta-mathematica/volume-61/issue-none/Sur-la-fonction-gamma-g%C3%A9n%C3%A9ralis%C3%A9e/10.1007/BF02547794.full">alternative link</a>.

Robert A. Van Gorder, <a href="https://doi.org/10.1142/S1793042112500297">Glaisher-type products over the primes</a>, International Journal of Number Theory, Vol. 8, No. 2 (2012), pp. 543-550.

Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Glaisher-KinkelinConstant.html">Glaisher-Kinkelin Constant</a>.

FORMULA

Equals (2*Pi*exp(gamma) * Product_{p prime} p^(1/(p^14-1)))^c, where gamma is Euler's constant (A001620), and c = Bernoulli(14)/14 = 1/12 (Van Gorder, 2012). - Amiram Eldar, Feb 08 2024

CROSSREFS
STATUS

approved

editing

#34 by OEIS Server at Fri Jan 01 20:17:23 EST 2016
LINKS

G. C. Greubel, <a href="/A260662/b260662_2.txt">Table of n, a(n) for n = 1..2001</a>

#33 by N. J. A. Sloane at Fri Jan 01 20:17:22 EST 2016
STATUS

reviewed

approved

Discussion
Fri Jan 01
20:17
OEIS Server: Installed new b-file as b260662.txt.  Old b-file is now b260662_2.txt.