Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A243399
a(0) = 1, a(1) = 19; for n > 1, a(n) = 19*a(n-1) + a(n-2).
15
1, 19, 362, 6897, 131405, 2503592, 47699653, 908796999, 17314842634, 329890807045, 6285240176489, 119749454160336, 2281524869222873, 43468721969394923, 828187242287726410, 15779026325436196713, 300629687425575463957, 5727743087411370011896
OFFSET
0,2
COMMENTS
a(n+1)/a(n) tends to (19 + sqrt(365))/2.
a(n) equals the number of words of length n on alphabet {0,1,...,19} avoiding runs of zeros of odd lengths. - Milan Janjic, Jan 28 2015
From Michael A. Allen, May 03 2023: (Start)
Also called the 19-metallonacci sequence; the g.f. 1/(1-k*x-x^2) gives the k-metallonacci sequence.
a(n) is the number of tilings of an n-board (a board with dimensions n X 1) using unit squares and dominoes (with dimensions 2 X 1) if there are 19 kinds of squares available. (End)
LINKS
Michael A. Allen and Kenneth Edwards, Fence tiling derived identities involving the metallonacci numbers squared or cubed, Fib. Q. 60:5 (2022) 5-17.
Tanya Khovanova, Recursive Sequences.
Eric Weisstein's World of Mathematics, Fibonacci Polynomial.
FORMULA
G.f.: 1/(1 - 19*x - x^2).
a(n) = (-1)^n*a(-n-2) = ((19 + sqrt(365))^(n+1)-(19 - sqrt(365))^(n+1))/(2^(n+1)*sqrt(365)).
a(n) = F(n+1, 19), the (n+1)-th Fibonacci polynomial evaluated at x = 19.
a(n)*a(n-2) - a(n-1)^2 = (-1)^n, with a(-2)=1, a(-1)=0.
MATHEMATICA
RecurrenceTable[{a[n] == 19 a[n - 1] + a[n - 2], a[0] == 1, a[1] == 19}, a, {n, 0, 20}]
PROG
(PARI) v=vector(20); v[1]=1; v[2]=19; for(i=3, #v, v[i]=19*v[i-1]+v[i-2]); v
(Magma) [n le 2 select 19^(n-1) else 19*Self(n-1)+Self(n-2): n in [1..20]];
(Maxima) a[0]:1$ a[1]:19$ a[n]:=19*a[n-1]+a[n-2]$ makelist(a[n], n, 0, 20);
(Sage)
from sage.combinat.sloane_functions import recur_gen2
a = recur_gen2(1, 19, 19, 1)
[next(a) for i in (0..20)]
CROSSREFS
Row n=19 of A073133, A172236 and A352361 and column k=19 of A157103.
Sequences with g.f. 1/(1-k*x-x^2) or x/(1-k*x-x^2): A000045 (k=1), A000129 (k=2), A006190 (k=3), A001076 (k=4), A052918 (k=5), A005668 (k=6), A054413 (k=7), A041025 (k=8), A099371 (k=9), A041041 (k=10), A049666 (k=11), A041061 (k=12), A140455 (k=13), A041085 (k=14), A154597 (k=15), A041113 (k=16), A178765 (k=17), A041145 (k=18), this sequence (k=19), A041181 (k=20). Also, many other sequences are in the OEIS with even k greater than 20 (denominators of continued fraction convergents to sqrt((k/2)^2+1)).
Sequence in context: A128360 A001029 A057685 * A041686 A263371 A023283
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Jun 04 2014
STATUS
approved