Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A178765
a(n) = 17*a(n-1) + a(n-2), with a(-1) = 0 and a(0) = 1.
15
0, 1, 17, 290, 4947, 84389, 1439560, 24556909, 418907013, 7145976130, 121900501223, 2079454496921, 35472626948880, 605114112627881, 10322412541622857, 176086127320216450, 3003786576985302507, 51240457936070359069, 874091571490181406680, 14910797173269154272629
OFFSET
-1,3
COMMENTS
The numerators and the denominators of continued fraction convergents to (17+sqrt(293))/2 lead to the sequence given above.
For positive n, a(n) equals the permanent of the n X n tridiagonal matrix with 17's along the main diagonal, and 1's along the superdiagonal and the subdiagonal. - John M. Campbell, Jul 08 2011
For n>=0, a(n) equals the number of words of length n on alphabet {0,1,...,17} avoiding runs of zeros of odd lengths. - Milan Janjic, Jan 28 2015
From Michael A. Allen, May 01 2023: (Start)
Also called the 17-metallonacci sequence; the g.f. 1/(1-k*x-x^2) gives the k-metallonacci sequence.
a(n+1) is the number of tilings of an n-board (a board with dimensions n X 1) using unit squares and dominoes (with dimensions 2 X 1) if there are 17 kinds of squares available. (End)
LINKS
Michael A. Allen and Kenneth Edwards, Fence tiling derived identities involving the metallonacci numbers squared or cubed, Fib. Q. 60:5 (2022) 5-17.
Dale Gerdemann, Fractal images from (17,1) recursion, YouTube Video, Nov 08 2014
Dale Gerdemann, Fractal images from (17,1) recursion: Selected image in detail, YouTube Video, Nov 08 2014
Tanya Khovanova, Recursive sequences
FORMULA
a(n) = 17*a(n-1) + a(n-2) with a(-1) = 0, a(0) = 1.
G.f.: 1/(1 - 17*x - x^2).
E.g.f.: exp(17*x/2)*sinh(sqrt(293)*x/2)/(sqrt(293)/2).
a(n) = ( (17+sqrt(17^2+4))^(n+1) - (17-sqrt(17^2+4))^(n+1) )/(2^(n+1)*sqrt(17^2+4)).
a(n) = (Sum_{i=0..floor(n/2)} binomial(n+1,2*i+1)*17^(n-2*i)*293^i)/2^n.
a(n) = Fibonacci(n+1,17), the (n+1)-th Fibonacci polynomial evaluated at x=17.
a(n) = U(n, 17*i/2)*(-i)^n with i^2=(-1) and U(n, x/2)=S(n, x), see A049310.
a(n-r-1)*a(n+r-1) - a(n-1)^2 + (-1)^(n-r)*a(r-1)^2 = 0; a(-1) = 0 and n >= r+1.
a(n-1) + a(n+1) = A090306(n+1); A090306(n)^2 - 293*a(n-1)^2 - 4*(-1)^n = 0.
a(p-1) == 293^((p-1)/2)) (mod p) for odd primes p.
a(2n+1) = 17*A098248(n) (S(n,291)), a(2n) = A098250(n) (first differences of S(n,291)).
a(3n) = A041551(5n), a(3n+1) = A041551(5n+3), a(3n+2) = 2*A041551(5n+4).
Limit_{k -> oo}(a(n+k)/a(k)) = (A090306(n) + a(n)*sqrt(293))/2.
Limit_{n -> oo)(A090306(n)/a(n)) = sqrt(293).
EXAMPLE
a(2) = 17*a(1) + a(0) = 289 + 1 = 290.
MAPLE
A178765:=proc(n): if n=0 then 1 elif n=1 then 17 elif n>=2 then 17*procname(n-1)+procname(n-2) fi: end: seq(A178765(n), n=0..15);
MATHEMATICA
Join[{a=0, b=1}, Table[c=17*b+1*a; a=b; b=c, {n, 100}]] (* Vladimir Joseph Stephan Orlovsky, Jan 16 2011 *)
Join[{0}, LinearRecurrence[{17, 1}, {1, 17}, 30]] (* Harvey P. Dale, Jan 29 2014 *)
CoefficientList[Series[x/(1-17x-x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Nov 08 2014 *)
PROG
(Magma) [n le 2 select (n-1) else 17*Self(n-1)+Self(n-2): n in [1..25]]; // Vincenzo Librandi, Nov 08 2014
(PARI) my(x='x+O('x^30)); concat([0], Vec(1/(1-17*x-x^2))) \\ G. C. Greubel, Jan 24 2019
(Sage) (x/(1-17*x-x^2)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jan 24 2019
(GAP) a:=[1, 17];; for n in [3..30] do a[n]:=17*a[n-1]+a[n-2]; od; Concatenation([0], a); # G. C. Greubel, Jan 24 2019
CROSSREFS
Cf. A000045 (k=1), A006190 (k=3), A052918 (k=5), A054413 (k=7), A099371 (k=9), A049666 (k=11), A140455 (k=13), A154597 (k=15), this sequence (k=17).
Cf. A243399.
Row n=17 of A073133, A172236 and A352361 and column k=17 of A157103.
Sequence in context: A015969 A001026 A368115 * A041546 A186000 A222572
KEYWORD
nonn,easy
AUTHOR
Johannes W. Meijer, Jun 12 2010, Jul 09 2011
EXTENSIONS
Changed name from defining a(1)=17. - Jon Perry, Nov 08 2014
More terms from Vincenzo Librandi, Nov 08 2014
STATUS
approved