Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
A256693
From fifth root of Riemann zeta function: form Dirichlet series Sum b(n)/n^x whose fifth power is zeta function; sequence gives denominator of b(n).
11
1, 5, 5, 25, 5, 25, 5, 125, 25, 25, 5, 125, 5, 25, 25, 625, 5, 125, 5, 125, 25, 25, 5, 625, 25, 25, 125, 125, 5, 125, 5, 15625, 25, 25, 25, 625, 5, 25, 25, 625, 5, 125, 5, 125, 125, 25, 5, 3125, 25, 125, 25, 125, 5, 625, 25, 625, 25, 25, 5, 625, 5, 25, 125, 78125, 25, 125, 5, 125, 25, 125, 5, 3125, 5, 25, 125, 125, 25, 125, 5, 3125, 625, 25, 5, 625, 25, 25, 25, 625, 5, 625, 25, 125, 25, 25, 25, 78125, 5, 125, 125, 625
OFFSET
1,2
COMMENTS
Dirichlet g.f. of A256692(n)/A256693(n) is (zeta (x))^(1/5).
Formula holds for general Dirichlet g.f. zeta(x)^(1/k) with k = 1, 2, ...
LINKS
FORMULA
with k = 5;
zeta(x)^(1/k) = Sum_{n>=1} b(n)/n^x;
c(1,n)=b(n); c(k,n) = Sum_{d|n} c(1,d)*c(k-1,n/d), k>1;
Then solve c(k,n) = 1 for b(m);
a(n) = denominator(b(n)).
EXAMPLE
b(1), b(2), ... =
1, 1/5, 1/5, 3/25, 1/5, 1/25, 1/5, 11/125, 3/25, 1/25, 1/5, 3/125, 1/5, 1/25, 1/25, 44/625, 1/5, 3/125, 1/5, 3/125, 1/25, 1/25, 1/5, 11/625
MATHEMATICA
k = 5;
c[1, n_] = b[n];
c[k_, n_] := DivisorSum[n, c[1, #1]*c[k - 1, n/#1] & ]
nn = 100; eqs = Table[c[k, n] == 1, {n, 1, nn}];
sol = Solve[Join[{b[1] == 1}, eqs], Table[b[i], {i, 1, nn}], Reals];
t = Table[b[n], {n, 1, nn}] /. sol[[1]];
num = Numerator[t] (* A256692 *)
den = Denominator[t] (* A256693 *)
CROSSREFS
Cf. A046643/A046644 (k=2), A256688/A256689 (k=3), A256690/A256691 (k=4), A256692/A256693 (k=5).
Sequence in context: A262117 A145764 A165826 * A255458 A256135 A227076
KEYWORD
nonn,frac,mult
AUTHOR
Wolfgang Hintze, Apr 08 2015
STATUS
approved