OFFSET
1,4
COMMENTS
REFERENCES
J. R. Chen, On the representation of a larger even integer as the sum of a prime and the product of at most two primes, Sci. Sinica 16(1973), 157-176.
LINKS
Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
Zhi-Wei Sun, Mixed sums of primes and other terms, in: Additive Number Theory (edited by D. Chudnovsky and G. Chudnovsky), pp. 341-353, Springer, New York, 2010.
Zhi-Wei Sun, Conjectures on representations involving primes, in: M. Nathanson (ed.), Combinatorial and Additive Number Theory II, Springer Proc. in Math. & Stat., Vol. 220, Springer, Cham, 2017, pp. 279-310. (See also arXiv:1211.1588 [math.NT], 2012-2017.)
EXAMPLE
a(3) = 1 since 2*3 = 3 + 2^1 + 3^0 with 3 = 2^1 + 3^0 prime.
MATHEMATICA
qq[n_]:=qq[n]=SquareFreeQ[n]&&Length[FactorInteger[n]]<=2;
tab={}; Do[r=0; Do[If[qq[2^k+3^m]&&PrimeQ[2n-2^k-3^m], r=r+1], {k, 0, Log[2, 2n-1]}, {m, 0, Log[3, 2n-2^k]}]; tab=Append[tab, r], {n, 1, 80}]; Print[tab]
CROSSREFS
Cf. A000040, A000079, A000224, A005117, A118955, A155216, A156695, A273812, A302982, A302984, A303233, A303234, A303338, A303363, A303389, A303393, A303399, A303428, A303401, A303432, A303434, A303539, A303540, A303541, A303543, A303601, A303637, A303639, A303656, A303660, A303702, A303821, A303932, A303934, A303949, A304031, A304034, A304081.
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, May 04 2018
STATUS
approved