Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
A319686
Number of distinct values obtained when arithmetic derivative (A003415) is applied to the divisors of n.
5
1, 2, 2, 3, 2, 3, 2, 4, 3, 3, 2, 5, 2, 3, 3, 5, 2, 5, 2, 5, 3, 3, 2, 7, 3, 3, 4, 5, 2, 6, 2, 6, 3, 3, 3, 8, 2, 3, 3, 7, 2, 6, 2, 5, 5, 3, 2, 9, 3, 5, 3, 5, 2, 7, 3, 7, 3, 3, 2, 10, 2, 3, 5, 7, 3, 6, 2, 5, 3, 6, 2, 11, 2, 3, 5, 5, 3, 6, 2, 9, 5, 3, 2, 10, 3, 3, 3, 7, 2, 10, 3, 5, 3, 3, 3, 11, 2, 5, 5, 8, 2, 6, 2, 7, 6, 3, 2, 11, 2, 6, 3, 8, 2, 6, 3, 5, 5, 3, 3, 14
OFFSET
1,2
LINKS
FORMULA
a(n) = 1+A319685(n).
MATHEMATICA
d[0] = d[1] = 0; d[n_] := d[n] = n * Plus @@ ((Last[#]/First[#]) & /@ FactorInteger[n]); a[n_] := CountDistinct[d /@ Divisors[n]]; Array[a, 100] (* Amiram Eldar, Apr 17 2024 *)
PROG
(PARI)
A003415(n) = {my(fac); if(n<1, 0, fac=factor(n); sum(i=1, matsize(fac)[1], n*fac[i, 2]/fac[i, 1]))}; \\ From A003415
A319686(n) = { my(m=Map(), s, k=0); fordiv(n, d, if(!mapisdefined(m, s=A003415(d)), mapput(m, s, s); k++)); (k); };
(PARI) a(n) = my(d = divisors(n)); for(i = 1, #d, d[i] = A003415(d[i])); #Set(d) \\ uses A003415 listed at Antti's programs. David A. Corneth, Oct 02 2018
CROSSREFS
One more than A319685.
Cf. A003415.
Cf. also A184395, A319696.
Sequence in context: A335516 A335549 A181796 * A326082 A067554 A135981
KEYWORD
nonn
AUTHOR
Antti Karttunen, Oct 02 2018
STATUS
approved