Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A321391
Array read by antidiagonals: T(n,k) is the number of achiral rows of n colors using up to k colors.
7
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 2, 1, 0, 1, 4, 3, 4, 1, 0, 1, 5, 4, 9, 4, 1, 0, 1, 6, 5, 16, 9, 8, 1, 0, 1, 7, 6, 25, 16, 27, 8, 1, 0, 1, 8, 7, 36, 25, 64, 27, 16, 1, 0, 1, 9, 8, 49, 36, 125, 64, 81, 16, 1, 0, 1, 10, 9, 64, 49, 216, 125, 256, 81, 32, 1, 0
OFFSET
0,8
COMMENTS
The antidiagonals go from top-right to bottom-left.
FORMULA
T(n,k) = [n==0] + [n>0] * k^ceiling(n/2).
The generating function for column k is (1+k*x) / (1-k*x^2).
EXAMPLE
The array begins with T(0,0):
1 1 1 1 1 1 1 1 1 1 1 1 ...
0 1 2 3 4 5 6 7 8 9 10 11 ...
0 1 2 3 4 5 6 7 8 9 10 11 ...
0 1 4 9 16 25 36 49 64 81 100 121 ...
0 1 4 9 16 25 36 49 64 81 100 121 ...
0 1 8 27 64 125 216 343 512 729 1000 1331 ...
0 1 8 27 64 125 216 343 512 729 1000 1331 ...
0 1 16 81 256 625 1296 2401 4096 6561 10000 14641 ...
0 1 16 81 256 625 1296 2401 4096 6561 10000 14641 ...
0 1 32 243 1024 3125 7776 16807 32768 59049 100000 161051 ...
0 1 32 243 1024 3125 7776 16807 32768 59049 100000 161051 ...
0 1 64 729 4096 15625 46656 117649 262144 531441 1000000 1771561 ...
For T(3,3)=9, the rows are AAA, ABA, ACA, BAB, BBB, BCB, CAC, CBC, and CCC.
MATHEMATICA
Table[If[n>0, (n-k)^Ceiling[k/2], 1], {n, 0, 12}, {k, 0, n}] // Flatten
CROSSREFS
Cf. A003992 (oriented), A277504 (unoriented), A293500 (chiral).
Sequence in context: A301504 A307432 A256140 * A244003 A369738 A360763
KEYWORD
nonn,easy,tabl
AUTHOR
Robert A. Russell, Nov 08 2018
STATUS
approved