OFFSET
0,8
COMMENTS
The antidiagonals go from top-right to bottom-left.
FORMULA
T(n,k) = [n==0] + [n>0] * k^ceiling(n/2).
The generating function for column k is (1+k*x) / (1-k*x^2).
EXAMPLE
The array begins with T(0,0):
1 1 1 1 1 1 1 1 1 1 1 1 ...
0 1 2 3 4 5 6 7 8 9 10 11 ...
0 1 2 3 4 5 6 7 8 9 10 11 ...
0 1 4 9 16 25 36 49 64 81 100 121 ...
0 1 4 9 16 25 36 49 64 81 100 121 ...
0 1 8 27 64 125 216 343 512 729 1000 1331 ...
0 1 8 27 64 125 216 343 512 729 1000 1331 ...
0 1 16 81 256 625 1296 2401 4096 6561 10000 14641 ...
0 1 16 81 256 625 1296 2401 4096 6561 10000 14641 ...
0 1 32 243 1024 3125 7776 16807 32768 59049 100000 161051 ...
0 1 32 243 1024 3125 7776 16807 32768 59049 100000 161051 ...
0 1 64 729 4096 15625 46656 117649 262144 531441 1000000 1771561 ...
For T(3,3)=9, the rows are AAA, ABA, ACA, BAB, BBB, BCB, CAC, CBC, and CCC.
MATHEMATICA
Table[If[n>0, (n-k)^Ceiling[k/2], 1], {n, 0, 12}, {k, 0, n}] // Flatten
CROSSREFS
KEYWORD
AUTHOR
Robert A. Russell, Nov 08 2018
STATUS
approved