Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A060546
a(n) = 2^ceiling(n/2).
37
1, 2, 2, 4, 4, 8, 8, 16, 16, 32, 32, 64, 64, 128, 128, 256, 256, 512, 512, 1024, 1024, 2048, 2048, 4096, 4096, 8192, 8192, 16384, 16384, 32768, 32768, 65536, 65536, 131072, 131072, 262144, 262144, 524288, 524288, 1048576, 1048576, 2097152, 2097152
OFFSET
0,2
COMMENTS
a(n) is also the number of median-reflective (palindrome) symmetric patterns in a top-down equilateral triangular arrangement of closely packed black and white cells satisfying the local matching rule of Pascal's triangle modulo 2, where n is the number of cells in each edge of the arrangement. The matching rule is such that any elementary top-down triangle of three neighboring cells in the arrangement contains either one or three white cells.
The number of possibilities for an n-game (sub)set of tennis with neither player gaining a 2-game advantage. (Motivated by the marathon Isner-Mahut match at Wimbledon, 2010.) - Barry Cipra, Jun 28 2010
Number of achiral rows of n colors using up to two colors. For a(3)=4, the rows are AAA, ABA, BAB, and BBB. - Robert A. Russell, Nov 07 2018
FORMULA
a(n) = 2^ceiling(n/2).
a(n) = A016116(n+1) for n >= 1.
a(n) = 2^A008619(n-1) for n >= 1.
G.f.: (1 + 2*x) / (1 - 2*x^2). - Ralf Stephan, Jul 15 2013
E.g.f.: cosh(sqrt(2)*x) + sqrt(2)*sinh(sqrt(2)*x). - Stefano Spezia, Feb 02 2023
MAPLE
for n from 0 to 100 do printf(`%d, `, 2^ceil(n/2)) od:
MATHEMATICA
2^Ceiling[Range[0, 50]/2] (* or *) Riffle[2^Range[0, 25], 2^Range[25]] (* Harvey P. Dale, Mar 05 2013 *)
LinearRecurrence[{0, 2}, {1, 2}, 40] (* Robert A. Russell, Nov 07 2018 *)
PROG
(PARI) a(n) = { 2^ceil(n/2) } \\ Harry J. Smith, Jul 06 2009
(Magma) [2^Ceiling(n/2): n in [0..50]]; // G. C. Greubel, Nov 07 2018
CROSSREFS
Column k=2 of A321391.
Cf. A000079 (oriented), A005418(n+1) (unoriented), A122746(n-2) (chiral).
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A029744 = {s(n), n>=1}, the numbers 2^k and 3*2^k, as the parent: A029744 (s(n)); A052955 (s(n)-1), A027383 (s(n)-2), A354788 (s(n)-3), A347789 (s(n)-4), A209721 (s(n)+1), A209722 (s(n)+2), A343177 (s(n)+3), A209723 (s(n)+4); A060482, A136252 (minor differences from A354788 at the start); A354785 (3*s(n)), A354789 (3*s(n)-7). The first differences of A029744 are 1,1,1,2,2,4,4,8,8,... which essentially matches eight sequences: A016116, A060546, A117575, A131572, A152166, A158780, A163403, A320770. The bisections of A029744 are A000079 and A007283. - N. J. A. Sloane, Jul 14 2022
Sequence in context: A152166 A320770 A016116 * A163403 A158780 A231208
KEYWORD
easy,nonn
AUTHOR
André Barbé (Andre.Barbe(AT)esat.kuleuven.ac.be), Apr 03 2001
EXTENSIONS
More terms from James A. Sellers, Apr 04 2001
a(0)=1 prepended by Robert A. Russell, Nov 07 2018
Edited by N. J. A. Sloane, Nov 10 2018
STATUS
approved