Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
A326025
Number of maximal subsets of {1..n} containing no sums or products of distinct elements.
4
1, 1, 2, 2, 2, 4, 5, 10, 13, 20, 28, 40, 54, 82, 120, 172, 244, 347, 471, 651, 874, 1198, 1635, 2210, 2867, 3895, 5234, 6889, 9019, 11919, 15629, 20460, 26254, 33827, 43881, 56367, 71841, 91834, 117695, 148503, 188039, 311442, 390859, 488327, 610685, 759665
OFFSET
0,3
EXAMPLE
The a(1) = 1 through a(8) = 13 maximal subsets:
{1} {1} {1} {1} {1} {1} {1} {1}
{2} {2,3} {2,3,4} {2,3,4} {2,3,4} {2,3,4} {2,3,4}
{2,4,5} {2,4,5} {2,3,7} {2,4,5}
{3,4,5} {2,5,6} {2,4,5} {2,4,7}
{3,4,5,6} {2,4,7} {2,5,6}
{2,5,6} {2,5,8}
{2,6,7} {2,6,7}
{3,4,5,6} {2,3,7,8}
{3,5,6,7} {3,4,5,6}
{4,5,6,7} {3,4,6,8}
{3,5,6,7}
{3,6,7,8}
{4,5,6,7,8}
MATHEMATICA
fasmax[y_]:=Complement[y, Union@@(Most[Subsets[#]]&/@y)];
Table[Length[fasmax[Select[Subsets[Range[n]], Intersection[#, Union[Plus@@@Subsets[#, {2, n}], Times@@@Subsets[#, {2, n}]]]=={}&]]], {n, 0, 10}]
PROG
(PARI) \\ See link for program file.
for(n=0, 25, print1(A326025(n), ", ")) \\ Andrew Howroyd, Aug 29 2019
CROSSREFS
Maximal subsets without sums of distinct elements are A326498.
Maximal subsets without products of distinct elements are A325710.
Subsets without sums or products of distinct elements are A326024.
Subsets with sums (and products) are A326083.
Maximal sum-free and product-free subsets are A326497.
Sequence in context: A230381 A082547 A068928 * A278502 A278501 A278231
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jul 09 2019
EXTENSIONS
a(16)-a(40) from Andrew Howroyd, Aug 29 2019
a(41)-a(45) from Jinyuan Wang, Oct 03 2020
STATUS
approved