Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A337884 Array read by descending antidiagonals: T(n,k) is the number of unoriented colorings of the triangular faces of a regular n-dimensional simplex using k or fewer colors. 10
1, 2, 1, 3, 5, 1, 4, 15, 34, 1, 5, 35, 792, 2136, 1, 6, 70, 10688, 4977909, 7013320, 1, 7, 126, 90005, 1533771392, 9930666709494, 1788782616656, 1, 8, 210, 533358, 132597435125, 234249157811872000, 12979877431438089379035, 53304527811667897248, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
2,2
COMMENTS
Each chiral pair is counted as one when enumerating unoriented arrangements. An n-simplex has n+1 vertices. For n=2, the figure is a triangle with one triangular face. For n=3, the figure is a tetrahedron with 4 triangular faces. For higher n, the number of triangular faces is C(n+1,3).
Also the number of unoriented colorings of the peaks of a regular n-dimensional simplex. A peak of an n-simplex is an (n-3)-dimensional simplex.
LINKS
E. M. Palmer and R. W. Robinson, Enumeration under two representations of the wreath product, Acta Math., 131 (1973), 123-143.
FORMULA
The algorithm used in the Mathematica program below assigns each permutation of the vertices to a partition of n+1. It then determines the number of permutations for each partition and the cycle index for each partition using a formula for binary Lyndon words. If the value of m is increased, one can enumerate colorings of higher-dimensional elements beginning with T(m,1).
T(n,k) = A337883(n,k) - A337885(n,k) = (A337883(n,k) + A337886(n,k)) / 2 = A337885(n,k) + A337886(n,k).
EXAMPLE
Table begins with T(2,1):
1 2 3 4 5 6 7 ...
1 5 15 35 70 126 210 ...
1 34 792 10688 90005 533358 2437848 ...
1 2136 4977909 1533771392 132597435125 5079767935320 110837593383153 ...
For T(3,4)=35, the 34 achiral arrangements are AAAA, AAAB, AAAC, AAAD, AABB, AABC, AABD, AACC, AACD, AADD, ABBB, ABBC, ABBD, ABCC, ABDD, ACCC, ACCD, ACDD, ADDD, BBBB, BBBC, BBBD, BBCC, BBCD, BBDD, BCCC, BCCD, BCDD, BDDD, CCCC, CCCD, CCDD, CDDD, and DDDD. The chiral pair is ABCD-ABDC.
MATHEMATICA
m=2; (* dimension of color element, here a triangular face *)
lw[n_, k_]:=lw[n, k]=DivisorSum[GCD[n, k], MoebiusMu[#]Binomial[n/#, k/#]&]/n (*A051168*)
cxx[{a_, b_}, {c_, d_}]:={LCM[a, c], GCD[a, c] b d}
compress[x:{{_, _} ...}] := (s=Sort[x]; For[i=Length[s], i>1, i-=1, If[s[[i, 1]]==s[[i-1, 1]], s[[i-1, 2]]+=s[[i, 2]]; s=Delete[s, i], Null]]; s)
combine[a : {{_, _} ...}, b : {{_, _} ...}] := Outer[cxx, a, b, 1]
CX[p_List, 0] := {{1, 1}} (* cycle index for partition p, m vertices *)
CX[{n_Integer}, m_] := If[2m>n, CX[{n}, n-m], CX[{n}, m] = Table[{n/k, lw[n/k, m/k]}, {k, Reverse[Divisors[GCD[n, m]]]}]]
CX[p_List, m_Integer] := CX[p, m] = Module[{v = Total[p], q, r}, If[2 m > v, CX[p, v - m], q = Drop[p, -1]; r = Last[p]; compress[Flatten[Join[{{CX[q, m]}}, Table[combine[CX[q, m - j], CX[{r}, j]], {j, Min[m, r]}]], 2]]]]
pc[p_] := Module[{ci, mb}, mb = DeleteDuplicates[p]; ci = Count[p, #] &/@ mb; Total[p]!/(Times @@ (ci!) Times @@ (mb^ci))] (* partition count *)
row[n_Integer] := row[n] = Factor[Total[pc[#] j^Total[CX[#, m+1]][[2]] & /@ IntegerPartitions[n+1]]/(n+1)!]
array[n_, k_] := row[n] /. j -> k
Table[array[n, d+m-n], {d, 8}, {n, m, d+m-1}] // Flatten
CROSSREFS
Cf. A337883 (oriented), A337885 (chiral), A337886 (achiral), A051168 (binary Lyndon words).
Other elements: A325000 (vertices), A327084 (edges).
Other polytopes: A337888 (orthotope), A337892 (orthoplex).
Rows 2-4 are A000027, A000332(n+3), A063843.
Sequence in context: A124819 A124019 A337886 * A337883 A202179 A297519
KEYWORD
nonn,tabl
AUTHOR
Robert A. Russell, Sep 28 2020
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 18 17:25 EDT 2024. Contains 374388 sequences. (Running on oeis4.)