Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A339881 Fundamental nonnegative solution x(n) of the Diophantine equation x^2 - A045339(n)*y^2 = -2, for n >= 1. 2
0, 1, 3, 13, 59, 23, 221, 9, 31, 103, 8807, 8005, 2047, 527593, 15, 1917, 11759, 9409, 52778687, 801, 113759383, 16437, 21, 1275, 305987, 67, 286025, 12656129, 261, 13458244873, 1381, 719175577, 1410305, 77, 13041, 5580152383, 313074529583, 186079, 1175615653, 949, 1434867510253, 186757799729, 11127596791, 116231 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,3
COMMENTS
The corresponding y values are given in A339882.
The Diophantine equation x^2 - p*y^2 = -2, of discriminant Disc = 4*p > 0 (indefinite binary quadratic form), with prime p can have proper solutions (gcd(x, y) = 1) only for primes p = 2 and p == 3 (mod 8) by parity arguments.
There are no improper solutions (with g >= 2, g^2 does not divide 2).
The prime p = 2 has just one infinite family of proper solutions with nonnegative x values. The fundamental proper solutions for p = 2 is (0, 1).
If a prime p congruent to 3 modulo 8, (p(n) = A007520(n)) has a solution then it can have only one infinite family of (proper) solutions with positive x value.
This family is self-conjugate (also called ambiguous, having with each solution (x, y) also (x, -y) as solution). This follows from the fact that there is only one representative parallel primitive form (rpapf), namely F_{pa(n)} = [-2, 2, -(p(n) - 1)/2].
The reduced principal form of Disc(n) = 4*p(n) is F_{p(n)} = [1, 2*s(n), -(p(n) - s(n)^2)], with s(n) = A000194(n'(n)), if p(n) = A000037(n'(n)). The corresponding (reduced) principal cycle has length L(n) = 2*A307372(n'(n)).
The number of all cycles, the class number, for Disc(n) is h(n'(n)) = A324252(n'(n)), Note that in the Buell reference, Table 2B in Appendix 2, p. 241, all Disc(n) <= 4*1051 = 4204 have class number 2, except for p = 443, 499, 659 (Disc = 1772, 1996, 26).
See the W. Lang link Table 1 for some principal reduced forms F_{p(n)} (there for p(n) in the D-column, and F_p is called FR(n)) with their t-tuples, giving the automporphic matrix Auto(n) = R(t_1) R(t_1) ... R(t_{L(n)}), where R(t) := Matrix([[0, -1], [1, t]]), and the length of the principal cycle L(n) given above, and in Table 2 for CR(n).
To prove the existence of a solution one would have to show that the rpapf F{pa(n)} is properly equivalent to the principal form F_{pa(n)}.
REFERENCES
D. A. Buell, Binary Quadratic Forms, Springer, 1989.
LINKS
FORMULA
Generalized Pell equation: Positive fundamental a(n), with a(n)^2 - A045339(n)*A339882(n)^2 = -2, for n >= 1.
EXAMPLE
The fundamental solutions [A045339(n), [x = a(n), y = A339882(n)]] begin:
[2, [0, 1]], [3, [1, 1]], [11, [3, 1]], [19, [13, 3]], [43, [59, 9]], [59, [23, 3]], [67, [221, 27]], [83, [9, 1]], [107, [31, 3]], [131, [103, 9]], [139, [8807, 747]], [163, [8005, 627]], [179, [2047, 153]], [211, [527593, 36321]], [227, [15, 1]], [251, [1917, 121]], [283, [11759, 699]], [307, [9409, 537]], [331, [52778687, 2900979]], [347, [801, 43]], [379, [113759383, 5843427]], [419, [16437, 803]], [443, [21, 1]], [467, [1275, 59]], [491, [305987, 13809]], [499, [67, 3]], [523, [286025, 12507]], [547, [12656129, 541137]], [563, [261, 11]], [571, [13458244873, 563210019]], [587, [1381, 57]], [619, [719175577, 28906107]], [643, [1410305, 55617]], [659, [77, 3]], [683, [13041, 499]], [691, [5580152383, 212279001]], [739, [313074529583, 11516632737]], [787, [186079, 6633]], [811, [1175615653, 41281449]], [827, [949, 33]], [859, [1434867510253, 48957047673]], [883, [186757799729, 6284900361]], [907, [11127596791, 369485787]], [947, [116231, 3777]], ...
CROSSREFS
Cf. A000194, A000037, A000194, A007520, A045339, A307372, A324252, A339882 (y values), A336793 (record y values), A336792 (corresponding odd p numbers).
Sequence in context: A151227 A151228 A366676 * A336791 A268596 A199297
KEYWORD
nonn
AUTHOR
Wolfdieter Lang, Dec 22 2020
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 18 20:50 EDT 2024. Contains 375284 sequences. (Running on oeis4.)