Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
A369889
The sum of squarefree divisors of the cubefree numbers.
1
1, 3, 4, 3, 6, 12, 8, 4, 18, 12, 12, 14, 24, 24, 18, 12, 20, 18, 32, 36, 24, 6, 42, 24, 30, 72, 32, 48, 54, 48, 12, 38, 60, 56, 42, 96, 44, 36, 24, 72, 48, 8, 18, 72, 42, 54, 72, 80, 90, 60, 72, 62, 96, 32, 84, 144, 68, 54, 96, 144, 72, 74, 114, 24, 60, 96, 168
OFFSET
1,2
COMMENTS
The number of squarefree divisors of the n-th cubefree number is A366536(n).
LINKS
FORMULA
a(n) = A048250(A004709(n)).
Sum_{j=1..n} a(j) ~ c * n^2, where c = zeta(3)^2/(2*zeta(5)) = 0.6967413068... .
In general, the formula holds for the sum of squarefree divisors of the k-free numbers with c = zeta(k)^2/(2*zeta(2*k-1))..., for k >= 2.
MATHEMATICA
f[p_, e_] := p + 1; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; cubefreeQ[n_] := Max[FactorInteger[n][[;; , 2]]] < 3; s /@ Select[Range[100], cubefreeQ]
(* or *)
f[p_, e_] := If[e > 2, 0, p + 1]; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; Select[Array[s, 100], # > 0 &]
PROG
(PARI) lista(kmax) = {my(f, s, p, e); for(k = 1, kmax, f = factor(k); s = prod(i = 1, #f~, p = f[i, 1]; e = f[i, 2]; if(e < 3, p + 1, 0)); if(s > 0, print1(s, ", "))); }
(Python)
from math import prod
from sympy import mobius, integer_nthroot, primefactors
def A369889(n):
def f(x): return n+x-sum(mobius(k)*(x//k**3) for k in range(1, integer_nthroot(x, 3)[0]+1))
m, k = n, f(n)
while m != k:
m, k = k, f(k)
return prod(p+1 for p in primefactors(m)) # Chai Wah Wu, Aug 12 2024
KEYWORD
nonn,easy
AUTHOR
Amiram Eldar, Feb 15 2024
STATUS
approved