Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
A370599
a(n) is the number of distinct triangles with integral side-lengths for which the perimeter 2*n divides the area.
1
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 0, 1, 0, 0, 1, 0, 0, 2, 0, 1, 1, 1, 2, 2, 0, 0, 1, 1, 0, 4, 0, 1, 3, 0, 0, 1, 0, 0, 0, 0, 0, 3, 1, 2, 1, 0, 0, 3, 0, 0, 3, 2, 1, 4, 0, 2, 0, 3, 0, 2, 0, 0, 2, 2, 3, 1, 0, 2, 4, 1, 0, 8, 1, 0, 1
OFFSET
1,21
COMMENTS
If the perimeter 2*n of a triangle with integral edge-lengths divides its area A, then this also applies to a triangle stretched with positive integer k, because A*k^2/(2*n*k) = k*A/(2*n). Therefore a(d) <= a(n) for all positive divisors d of n and a(m) >= a(n) for all positive integer multiples m of n.
With an odd perimeter, according to Heron's formula the area A would have the form A = sqrt((2*k - 1)/8), where k is a positive integer. The area A would be irrational and the integer perimeter would not divide the area A. For this reason, only triangles with an even perimeter are considered in this sequence.
LINKS
FORMULA
a(n*k) >= a(n) for positive integers k.
EXAMPLE
a(18) = 1, because only the triangle (9, 10, 17) satisfies the condition: A/(2*n) = 36/36 = 1. (9, 10, 17) is one of the five triangles for which the perimeter is equal to the area (see A098030).
a(42) = 4, because exactly the 4 triangles (10, 35, 39) with A/(2*n) = 168/84 = 2, (14, 30, 40) with A/(2*n) = 168/84 = 2, (15, 34, 35) with A/(2*n) = 252/84 = 3 and (26, 28, 30) with A/(2*n) = 336/84 = 4 satisfy the condition.
a(426) = 0, because no triangle satisfies the condition. Therefore, a(n) = 0 for all n for which n*k = 426 for positive integers k.
MAPLE
A370599 := proc(n) local u, v, w, A, q, i; i := 0; for u to floor(2/3*n) do for v from max(u, floor(n - u) + 1) to floor(n - 1/2*u) do w := 2*n - u - v; A := sqrt(n*(n - u)*(n - v)*(n - w)); if A = floor(A) then q := 1/2*A/n; if q = floor(q) then i := i + 1; end if; end if; end do; end do; return i; end proc;
seq(A370599(n), n = 1 .. 87);
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Felix Huber, Mar 09 2024
STATUS
approved