Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
A373985
a(n) = gcd(A108951(n), A373158(n)), where A108951 is fully multiplicative and A373158 is fully additive with a(p) = p# for prime p, where x# is the primorial A034386(x).
7
1, 2, 6, 4, 30, 4, 210, 2, 12, 4, 2310, 2, 30030, 4, 36, 8, 510510, 2, 9699690, 2, 36, 4, 223092870, 12, 60, 4, 18, 2, 6469693230, 2, 200560490130, 2, 12, 4, 60, 16, 7420738134810, 4, 12, 12, 304250263527210, 2, 13082761331670030, 2, 6, 4, 614889782588491410, 2, 420, 2, 36, 2, 32589158477190044730, 4, 180, 24, 36, 4
OFFSET
1,2
FORMULA
a(n) = gcd(A373158(n), A373984(n)).
a(n) = A108951(n) / A373987(n).
For n >= 2, a(n) = A373158(n) / A373986(n).
For n >= 1, a(A000040(n)) = A002110(n).
PROG
(PARI) A373985(n) = { my(f=factor(n), m=1, s=0); for(i=1, #f~, my(x=prod(i=1, primepi(f[i, 1]), prime(i))); s += f[i, 2]*x; m *= x^f[i, 2]); gcd(m, s); };
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 25 2024
STATUS
approved