Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

Revision History for A013954

(Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
a(n) = sigma_6(n), the sum of the 6th powers of the divisors of n.
(history; published version)
#40 by Michel Marcus at Sun Oct 29 02:34:34 EDT 2023
STATUS

reviewed

approved

#39 by Joerg Arndt at Sun Oct 29 02:10:29 EDT 2023
STATUS

proposed

reviewed

#38 by Amiram Eldar at Sun Oct 29 02:09:36 EDT 2023
STATUS

editing

proposed

#37 by Amiram Eldar at Sun Oct 29 01:44:16 EDT 2023
FORMULA

G.f.: sum_Sum_{k>=1} k^6*x^k/(1-x^k). - Benoit Cloitre, Apr 21 2003

#36 by Amiram Eldar at Sun Oct 29 01:22:51 EDT 2023
DATA

1, 65, 730, 4161, 15626, 47450, 117650, 266305, 532171, 1015690, 1771562, 3037530, 4826810, 7647250, 11406980, 17043521, 24137570, 34591115, 47045882, 65019786, 85884500, 115151530, 148035890, 194402650, 244156251, 313742650, 387952660, 489541650, 594823322, 741453700

#35 by Amiram Eldar at Sun Oct 29 01:07:06 EDT 2023
LINKS

<a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>.

FORMULA

From Amiram Eldar, Oct 29 2023: (Start)

Multiplicative with a(p^e) = (p^(6*e+6)-1)/(p^6-1).

Dirichlet g.f.: zeta(s)*zeta(s-6).

Sum_{k=1..n} a(k) = zeta(7) * n^7 / 7 + O(n^8). (End)

STATUS

approved

editing

#34 by Charles R Greathouse IV at Thu Sep 08 08:44:38 EDT 2022
PROG

(MAGMAMagma) [DivisorSigma(6, n): n in [1..30]]; // Bruno Berselli, Apr 10 2013

Discussion
Thu Sep 08
08:44
OEIS Server: https://oeis.org/edit/global/2944
#33 by N. J. A. Sloane at Sat Dec 07 12:18:18 EST 2019
PROG

(Sage) [sigma(n, 6)for n in xrangerange(1, 24)] # Zerinvary Lajos, Jun 04 2009

Discussion
Sat Dec 07
12:18
OEIS Server: https://oeis.org/edit/global/2837
#32 by N. J. A. Sloane at Sat May 06 19:53:03 EDT 2017
STATUS

proposed

approved

#31 by Ilya Gutkovskiy at Sat May 06 17:58:37 EDT 2017
STATUS

editing

proposed