Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

Revision History for A078150

(Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Smallest x such that d[phi(x)]-phi[d(x)]=n, where d()=A000005(),phi()=A000010() restricted to cases when d[phi(x)]-phi[d(x)] is positive.
(history; published version)
#6 by N. J. A. Sloane at Tue Oct 15 22:31:44 EDT 2013
AUTHOR

_Labos E. (labos(AT)ana.sote.hu), Elemer_, Nov 26 2002

Discussion
Tue Oct 15
22:31
OEIS Server: https://oeis.org/edit/global/2029
#5 by N. J. A. Sloane at Fri Feb 24 03:00:00 EST 2006
MATHEMATICA

f[x_] := DivisorSigma[0, EulerPhi[x]]-EulerPhi[DivisorSigma[0, x]] t=Table[0, {100}]; Do[s=f[n]; If[s<101&&t[[s]]==0, t[[s]]=n], {n, 1, 100000}]; t

KEYWORD

easy,nonn,new

#4 by N. J. A. Sloane at Tue Jan 24 03:00:00 EST 2006
KEYWORD

easy,nonn,new

AUTHOR

Labos E. (labos(AT)ana1ana.sote.hu), Nov 26 2002

#3 by N. J. A. Sloane at Sat Jun 12 03:00:00 EDT 2004
MATHEMATICA

f[x_] := DivisorSigma[0, EulerPhi[x]]-EulerPhi[DivisorSigma[0, x]] t=Table[0, {100}]; Do[s=f[n]; If[s<101&&t[[s]]==0, t[[s]]=n], {n, 1, 100000}]; t

KEYWORD

easy,nonn,new

#2 by N. J. A. Sloane at Thu Feb 19 03:00:00 EST 2004
MATHEMATICA

f[x_] :=DivisorSigma[0, EulerPhi[x]]-EulerPhi[DivisorSigma[0, x]] t=Table[0, {100}]; Do[s=f[n]; If[s<101&&t[[s]]==0, t[[s]]=n], {n, 1, 100000}]; t

KEYWORD

easy,nonn,new

#1 by N. J. A. Sloane at Fri May 16 03:00:00 EDT 2003
NAME

Smallest x such that d[phi(x)]-phi[d(x)]=n, where d()=A000005(),phi()=A000010() restricted to cases when d[phi(x)]-phi[d(x)] is positive.

DATA

3, 5, 7, 17, 13, 35, 31, 37, 113, 77, 61, 221, 185, 143, 211, 209, 181, 287, 241, 577, 1729, 403, 421, 1297, 1057, 1001, 2113, 779, 1009, 899, 1321, 1917, 5629, 1333, 1801, 2233, 7125, 1763, 2161, 2993, 4433, 4851, 3737, 3311, 51319, 2623, 2521

OFFSET

1,1

MATHEMATICA

f[x_] :=DivisorSigma[0, EulerPhi[x]]-EulerPhi[DivisorSigma[0, x]] t=Table[0, {100}]; Do[s=f[n]; If[s<101&&t[[s]]==0, t[[s]]=n], {n, 1, 100000}]; t

CROSSREFS
KEYWORD

easy,nonn

AUTHOR

Labos E. (labos(AT)ana1.sote.hu), Nov 26 2002

STATUS

approved