proposed
approved
proposed
approved
editing
proposed
Dario Alpern, <a href="httphttps://www.alpertron.com.ar/ECM.HTM">ECMFactorization using the Elliptic Curve Method</a>
approved
editing
More terms from _Hugo Pfoertner (hugo(AT)pfoertner.org), _, May 31, 2003, using Dario Alpern's ECM.
_Marc LeBrun (mlb(AT)well.com), _, May 31 2003
a(1) = 2, a(2) = 3, ; for n >= 2, a(n+1) is largest prime factor of (Product_{k=1..n} a(k) ) - 1.
a(5)=79 since 2*3*5*29=870 and 79 is the largest prime factor of 870-1=869=11*79.
nonn,new
nonn
nonn,new
nonn
More terms from Hugo Pfoertner (allhugo(AT)abouthugopfoertner.deorg), May 31, 2003, using Dario Alpern's ECM.
a(1) = 2, a(2) = 3, a(n+1) is largest prime factor of Product_{k=1..n} a(k) - 1.
2, 3, 5, 29, 79, 68729, 3739, 6221191, 157170297801581, 70724343608203457341903, 46316297682014731387158877659877, 78592684042614093322289223662773, 181891012640244955605725966274974474087, 547275580337664165337990140111772164867508038795347198579326533639132704344301831464707648235639448747816483406685904347
1,1
Like the Euclid-Mullin sequence A000946, but subtracting rather than adding 1 to the product.
Dario Alpern, <a href="http://www.alpertron.com.ar/ECM.HTM">ECM</a>
a(4)=29 since 2*3*5=30 and 29 is the largest prime factor of 30-1
nonn
Marc LeBrun (mlb(AT)well.com), May 31 2003
More terms from Hugo Pfoertner (all(AT)abouthugo.de), May 31, 2003, using Dario Alpern's ECM.
The next term a(15) is not known. It requires the factorization of the 245-digit composite number which remains after eliminating 7 smaller factors.
approved