Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

Revision History for A103783

(Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Primes of the form primorial P(k)*n-1 with minimal n, n>0, k>=2.
(history; published version)
#8 by Joerg Arndt at Tue Jul 03 16:01:28 EDT 2012
STATUS

proposed

approved

#7 by R. J. Mathar at Tue Jul 03 16:00:25 EDT 2012
STATUS

editing

proposed

#6 by R. J. Mathar at Tue Jul 03 16:00:08 EDT 2012
COMMENTS

Smallest prime p such that the prime factorization of p+1 contains the first n+1 primes. - R. J. Mathar, Jul 03 2012

CROSSREFS
STATUS

approved

editing

#5 by Russ Cox at Sat Mar 31 10:23:47 EDT 2012
AUTHOR

_Lei Zhou (lzhou5(AT)emory.edu), _, Feb 15 2005

Discussion
Sat Mar 31
10:23
OEIS Server: https://oeis.org/edit/global/387
#4 by N. J. A. Sloane at Fri Feb 27 03:00:00 EST 2009
MATHEMATICA

nmax = 2^2048; npd = 2; n = 2; npd = npd*Prime[n]; While[npd < nmax, tt = 1; cp = npd*tt - 1; While[(tt &#8804; <= (Prime[n])^2) && (! (PrimeQ[cp])), tt = tt + 1; cp = npd*tt - 1]; Print[cp]; n = n + 1; npd = npd*Prime[n]]

KEYWORD

nonn,new

nonn

#3 by N. J. A. Sloane at Sun Jun 29 03:00:00 EDT 2008
OFFSET

2,1,1

KEYWORD

nonn,new

nonn

#2 by N. J. A. Sloane at Sat Apr 09 03:00:00 EDT 2005
MATHEMATICA

nmax = 2^2048; npd = 2; n = 2; npd = npd*Prime[n]; While[npd < nmax, tt = 1; cp = npd*tt - 1; While[(tt &#8804; (Prime[n])^2) && (! (PrimeQ[cp])), tt = tt + 1; cp = npd*tt - 1]; Print[cp]; n = n + 1; npd = npd*Prime[n]]

KEYWORD

nonn,new

nonn

#1 by N. J. A. Sloane at Sun Feb 20 03:00:00 EST 2005
NAME

Primes of the form primorial P(k)*n-1 with minimal n, n>0, k>=2.

DATA

5, 29, 419, 2309, 30029, 1021019, 19399379, 669278609, 38818159379, 601681470389, 14841476269619, 304250263527209, 235489703970060539, 1844669347765474229, 228124109340330313109, 24995884552004764307909

OFFSET

2,1

COMMENTS

Weak conjecture: sequence is defined for all k>=2; strong conjecture: n<(prime(k))^2;

EXAMPLE

P(2)*1-1=5 is prime, so a(2)=5;

P(9)*3-1=669278609 is prime, so a(9)=669278609;

MATHEMATICA

nmax = 2^2048; npd = 2; n = 2; npd = npd*Prime[n]; While[npd < nmax, tt = 1; cp = npd*tt - 1; While[(tt &#8804; (Prime[n])^2) && (! (PrimeQ[cp])), tt = tt + 1; cp = npd*tt - 1]; Print[cp]; n = n + 1; npd = npd*Prime[n]]

CROSSREFS
KEYWORD

nonn,new

AUTHOR

Lei Zhou (lzhou5(AT)emory.edu), Feb 15 2005

STATUS

approved