proposed
approved
proposed
approved
editing
proposed
_Lei Zhou (lzhou5(AT)emory.edu), _, Feb 15 2005
nmax = 2^2048; npd = 2; n = 2; npd = npd*Prime[n]; While[npd < nmax, tt = 1; cp = npd*tt - 1; While[(tt ≤ <= (Prime[n])^2) && (! (PrimeQ[cp])), tt = tt + 1; cp = npd*tt - 1]; Print[cp]; n = n + 1; npd = npd*Prime[n]]
nonn,new
nonn
2,1,1
nonn,new
nonn
nmax = 2^2048; npd = 2; n = 2; npd = npd*Prime[n]; While[npd < nmax, tt = 1; cp = npd*tt - 1; While[(tt ≤ (Prime[n])^2) && (! (PrimeQ[cp])), tt = tt + 1; cp = npd*tt - 1]; Print[cp]; n = n + 1; npd = npd*Prime[n]]
nonn,new
nonn
Primes of the form primorial P(k)*n-1 with minimal n, n>0, k>=2.
5, 29, 419, 2309, 30029, 1021019, 19399379, 669278609, 38818159379, 601681470389, 14841476269619, 304250263527209, 235489703970060539, 1844669347765474229, 228124109340330313109, 24995884552004764307909
2,1
Weak conjecture: sequence is defined for all k>=2; strong conjecture: n<(prime(k))^2;
P(2)*1-1=5 is prime, so a(2)=5;
P(9)*3-1=669278609 is prime, so a(9)=669278609;
nmax = 2^2048; npd = 2; n = 2; npd = npd*Prime[n]; While[npd < nmax, tt = 1; cp = npd*tt - 1; While[(tt ≤ (Prime[n])^2) && (! (PrimeQ[cp])), tt = tt + 1; cp = npd*tt - 1]; Print[cp]; n = n + 1; npd = npd*Prime[n]]
nonn,new
Lei Zhou (lzhou5(AT)emory.edu), Feb 15 2005
approved