Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

Revision History for A107595

(Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
G.f. satisfies: A(x) = Sum_{n>=0} x^n * A(x)^(n^2).
(history; published version)
#16 by Alois P. Heinz at Tue Nov 05 13:55:20 EST 2019
STATUS

proposed

approved

#15 by Michel Marcus at Tue Nov 05 12:56:19 EST 2019
STATUS

editing

proposed

#14 by Michel Marcus at Tue Nov 05 12:56:16 EST 2019
FORMULA

Contribution from _From _Paul D. Hanna_, Apr 23 2010: (Start)

Contribution from _From _Paul D. Hanna_, May 04 2010: (Start)

STATUS

proposed

editing

#13 by Jean-François Alcover at Tue Nov 05 12:53:17 EST 2019
STATUS

editing

proposed

#12 by Jean-François Alcover at Tue Nov 05 12:53:13 EST 2019
MATHEMATICA

m = 25; A[_] = 0;

Do[A[x_] = 1 + Sum[x^k A[x]^(k^2) + O[x]^j, {k, 1, j}], {j, m}];

CoefficientList[A[x], x] (* Jean-François Alcover, Nov 05 2019 *)

STATUS

approved

editing

#11 by Paul D. Hanna at Tue Jun 03 00:58:25 EDT 2014
STATUS

editing

approved

#10 by Paul D. Hanna at Tue Jun 03 00:58:19 EDT 2014
LINKS

Paul D. Hanna, <a href="/A107595/b107595.txt">Table of n, a(n) for n = 0..200</a>

#9 by Paul D. Hanna at Tue Jun 03 00:09:37 EDT 2014
DATA

1, 1, 2, 7, 31, 158, 884, 5292, 33385, 219797, 1500449, 10573815, 76688602, 571232869, 4363912280, 34161879247, 273906591562, 2248935278231, 18909284838057, 162842178607893, 1436660527685476, 12988076148036405, 120345643023918566, 1143054910071718088, 11129160383826078389

FORMULA

G.f. A(x) = (1/x)*series-reversionSeries_Reversion(x/G107594F(x)) and thus A(x) = G107594F(x*A(x)) where G107594F(x) is the g.f. of A107594. G.f. A(x) = x/series-reversion(x*G107596(x)) and thus A(x) = G107596(x/A(x)) where G107596(x) is the g.f. of A107596.

G.f. A(x) = x/Series_Reversion(x*G(x)) and thus A(x) = G(x/A(x)) where G(x) is the g.f. of A107596.

A = 1/(1 - A*x/(1 - (A^3-A)*x/(1 - A^5*x/(1 - (A^7-A^3)*x/(1 - A^9*x/(1- (A^11-A^5)*x/(1 - A^13*x/(1 - (A^15-A^7)*x/(1 - ...)))))))))

A = Sum_{n>=0} x^n*A^n * Product_{k=1..n} (1 - x*A^(4k-3)) / (1 - x*A^(4k-1))

EXAMPLE

G.f.: A(x) = 1 + x + 2*x^2 + 7*x^3 + 31*x^4 + 158*x^5 + 884*x^6 + 5292*x^7 +...

Let A = g.f. A(x) then

= 1 + (x *(1 + x^2 + 2*x^3 2 + 7*x^4 3 + 31*x^5 4 + 158*x^5 + 884*x^6 +...)

+ (x^2 *(1 + 4*x^3 + 14*x^4 2 + 56*x^5 3 + 257*x^6 4 + 1312*x^5 +...)

+ (x^3 *(1 + 9*x^4 + 54*x^5 2 + 291*x^6 3 + 1557*x^7 4 + 8568*x^5 +..)

+ (x^4 *(1 + 16*x^5 + 152*x^6 2 + 1152*x^7 3 + 7836*x^4 +...) +...

+ x^5*(1 + 25*x + 350*x^2 + 3675*x^3 + 32625*x^4 +...)

+ x^6*(1 + 36*x + 702*x^2 + 9912*x^3 + 114201*x^4 +...) +...

PROG

for(n=0, 30, print1(a(n), ", "))

STATUS

approved

editing

#8 by Paul D. Hanna at Fri Sep 28 09:45:38 EDT 2012
STATUS

editing

approved

#7 by Paul D. Hanna at Fri Sep 28 09:45:30 EDT 2012
CROSSREFS
STATUS

approved

editing