Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

Revision History for A130068

(Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing all changes.
Maximal power of 2 dividing the binomial coefficient binomial(m, 2^k) where m >= 1 and 1 <= 2^k <= m.
(history; published version)
#6 by Joerg Arndt at Sat Dec 09 03:20:21 EST 2017
STATUS

proposed

approved

#5 by Jon E. Schoenfield at Sat Dec 09 01:10:59 EST 2017
STATUS

editing

proposed

#4 by Jon E. Schoenfield at Sat Dec 09 01:10:50 EST 2017
NAME

Maximal power of 2 dividing the binomial coefficient binomial(m, 2^k) where m >= 1 and 1 <= 2^k <= m.

STATUS

approved

editing

#3 by Russ Cox at Sat Mar 31 13:21:02 EDT 2012
AUTHOR

Hieronymus Fischer (_Hieronymus. Fischer(AT)gmx.de), _, May 05 2007, Sep 10 2007

Discussion
Sat Mar 31
13:21
OEIS Server: https://oeis.org/edit/global/882
#2 by N. J. A. Sloane at Sat Nov 10 03:00:00 EST 2007
COMMENTS

Provided m and k are given, the sequence index n is n=A001855(m)+k+1. Ordered by m as lines rows and k as rows columns the sequence forms a sort of a logarithmically distorted triangle. a(n) is the maxmal power of 2 dividing A130067(n). Equivalent propositions: (1) a(n)=0; (2) A130067(n) is odd; (3) the k-th digit of m is 1; (4) A030308(n)=1.

a(n) is the maximal power of 2 dividing A130067(n).

Equivalent propositions: (1) a(n)=0; (2) A130067(n) is odd; (3) the k-th digit of m is 1; (4) A030308(n)=1.

FORMULA

a(n)=g(m)-g(m-2^k) where g(x)=sum(floor(x/2^i), k<i<=floor(log_2(x))), m=max(j | A001855(j)<n) and k=n-1-A001855(jm). Also true: a(n)=sum(product(1-b(i), k<=i<j), k<j<=floor(log_2(m))) where b(i) is the i-th digit of the binary representation of m. Example: n=35 gives m=12 and k=1, so that m=1100 and a(n)=1-b(1)+(1-b(1))(1-b(2))=1+0=1.

KEYWORD

nonn,tabl,new

AUTHOR

Hieronymus Fischer (Hieronymus.Fischer(AT)gmx.de), May 05 2007, Sep 10 2007

#1 by N. J. A. Sloane at Fri May 11 03:00:00 EDT 2007
NAME

Maximal power of 2 dividing the binomial coefficient binomial(m,2^k) where m>=1 and 1<=2^k<=m.

DATA

0, 1, 0, 0, 0, 2, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 3, 2, 1, 0, 0, 2, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 2, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 4, 3, 2, 1, 0, 0, 3, 2, 1, 0, 1, 0, 2, 1, 0, 0, 0, 2, 1, 0, 2, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 3, 2, 1, 0, 0, 0, 2, 1, 0, 0, 1, 0, 1, 0, 0, 0

OFFSET

1,6

COMMENTS

Provided m and k are given, the sequence index n is n=A001855(m)+k+1. Ordered by m as lines and k as rows the sequence forms a sort of logarithmically distorted triangle. a(n) is the maxmal power of 2 dividing A130067(n). Equivalent propositions: (1) a(n)=0; (2) A130067(n) is odd; (3) the k-th digit of m is 1; (4) A030308(n)=1.

FORMULA

a(n)=g(m)-g(m-2^k) where g(x)=sum(floor(x/2^i), k<i<=floor(log_2(x))), m=max(j | A001855(j)<n) and k=n-1-A001855(j). Also true: a(n)=sum(product(1-b(i), k<=i<j), k<j<=floor(log_2(m))) where b(i) is the i-th digit of the binary representation of m. Example: n=35 gives m=12 and k=1, so that m=1100 and a(n)=1-b(1)+(1-b(1))(1-b(2))=1+0=1.

EXAMPLE

a(6)=2 since 2^2 divides binomial(4,2^0)=4 and 2^3 is not a factor (here n=6 gives m=4, k=0).

a(20)=1 since 2^1 divides binomial(8,2^2)=70 and 2^2 is not a factor (here n=20 gives m=8, k=2).

CROSSREFS
KEYWORD

nonn,tabl,new

AUTHOR

Hieronymus Fischer (Hieronymus.Fischer(AT)gmx.de), May 05 2007

STATUS

approved