Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)

Revision History for A268442

(Underlined text is an addition; strikethrough text is a deletion.)

Showing entries 1-10 | older changes
A268442 Triangle read by rows, the coefficients of the inverse Bell polynomials.
(history; published version)
#19 by Peter Luschny at Tue Feb 09 03:44:10 EST 2016
STATUS

proposed

approved

#18 by Peter Luschny at Mon Feb 08 16:50:09 EST 2016
STATUS

editing

proposed

#17 by Peter Luschny at Mon Feb 08 13:21:46 EST 2016
COMMENTS

The triangle of coefficients of the Bell polynomials is A268441. For the definition of the inverse Bell polynomials see the link 'Bell transform' and the Sage implementation.'.

#16 by Peter Luschny at Mon Feb 08 13:18:51 EST 2016
MATHEMATICA

A268442Matrix[dim_] := Module[ {v, r, A},

v = Table[Subscript[x, j], {j, 1, dim}];

r = Table[Subscript[x, j]->1, {j, 1, n}];

A = Table[Table[BellY[n, k, v], {k, 0, dim}], {n, 0, dim}];

Table[Table[MonomialList[Inverse[A][[n, k]]/. r[[1]],

v, Lexicographic] /. r, {k, 1, n}] // Flatten, {n, 1, dim}]];

A268442Matrix[7] // Flatten

#15 by Peter Luschny at Mon Feb 08 03:41:18 EST 2016
EXAMPLE

Replacing the sublists by their sums reduces the triangle to the triangle of the Stirling numbers of first kind (A048994). The column 1 of sublists is A176740 (which missesmissing the leading 1) and A134685 in different order.

#14 by Peter Luschny at Mon Feb 08 03:36:10 EST 2016
COMMENTS

The triangle of coefficients of the Bell polynomials is A268441. For the definition of the inverse Bell polynomials see the Sage code belowlink 'Bell transform' and the link 'BellSage transform'.implementation.

LINKS

Peter Luschny, <a href="/A268442/b268442.txt">TableFirst of21 nrows, a(n) for n = 0..8286flattened</a>

#13 by Peter Luschny at Mon Feb 08 03:31:31 EST 2016
PROG

(Sage)) # see link

def InverseBellPolynomial_List(dim):

def bell_polynomial(n):

X = var(['x'+str(i) for i in (0..dim)])

@cached_function

def T(n, k):

if k==0: return k^n

return sum(binomial(n-1, j-1)*T(n-j, k-1)*X[j-1]

for j in (0..n-k+1)).expand()

return [T(n, k) for k in (0..n)]

A = [[f for f in bell_polynomial(n)] for n in range(dim)]

M = [[0 for k in (0..n)] for n in range(dim)]

for n in range(dim):

M[n][n] = 1/A[n][n]

for k in range(n-1, -1, -1):

M[n][k] = expand(-sum(A[i][k]*M[n][i]

for i in range(n, k, -1))/A[k][k])

return M

import itertools

def Coefficients(M):

def flatten(iter_lst):

L = list(itertools.chain(*iter_lst))

return list(itertools.chain(*L))

def coefficient(p):

c = SR(p).fraction(ZZ).numerator().coefficients()

return [0] if not c else c

A = [[coefficient(p) for p in M[n]] for n in range(len(M))]

return flatten(A)

A268442_matrix = lambda dim: Coefficients(InverseBellPolynomial_List(dim))

A268442_matrix(7)

#12 by Peter Luschny at Mon Feb 08 03:30:39 EST 2016
LINKS

Peter Luschny, <a href="/A268442/a268442.txt">SageMath implementation</a>

#11 by Peter Luschny at Sun Feb 07 17:50:23 EST 2016
CROSSREFS

Cf. A036040, A048994, A134685, A176740, A268441.

#10 by Peter Luschny at Sun Feb 07 17:46:30 EST 2016
LINKS

Peter Luschny, <a href="/A268442/b268442.txt">Table of n, a(n) for n = 0..8286</a>

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 18 19:26 EDT 2024. Contains 375273 sequences. (Running on oeis4.)