Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Search: a000560 -id:a000560
     Sort: relevance | references | number | modified | created      Format: long | short | data
Semi-meanders: number of ways a semi-infinite directed curve can cross a straight line n times.
(Formerly M1205 N0464)
+10
35
1, 1, 2, 4, 10, 24, 66, 174, 504, 1406, 4210, 12198, 37378, 111278, 346846, 1053874, 3328188, 10274466, 32786630, 102511418, 329903058, 1042277722, 3377919260, 10765024432, 35095839848, 112670468128, 369192702554, 1192724674590, 3925446804750
OFFSET
1,3
COMMENTS
For n > 1, the number of permutations of n letters without overlaps [Sade, 1949]. - N. J. A. Sloane, Jul 05 2015
Number of ways to fold a strip of n labeled stamps with leaf 1 on top. [Clarified by Stéphane Legendre, Apr 09 2013]
From Roger Ford, Jul 04 2014: (Start)
The number of semi-meander solutions for n (a(n)) is equal to the number of n top arch solutions in the intersection of A001263 (with no intersecting top arches) and A244312 (arches forming a complete loop).
The top and bottom arches for semi-meanders pass through vertices 1-2n on a straight line with the arches below the line forming a rainbow pattern.
The number of total arches going from an odd vertex to a higher even vertex must be exactly 2 greater than the number of arches going from an even vertex to a higher odd vertex to form a single complete loop with no intersections.
The arch solutions in the intersection of A001263 (T(n,k)) and A244312 (F(n,k)) occur when the number of top arches going from an odd vertex to a higher even vertex (k) meets the condition that k = ceiling((n+1)/2).
Example: semi-meanders a(5)=10.
(A244312) F(5,3)=16 { 10 common solutions: [12,34,5 10,67,89] [16,23,45,78,9 10] [12,36,45,7 10,89] [14,23,58,67,9 10] [12,3 10,49,58,67] [18,27,36,45,9 10] [12,3 10,45,69,78] [18,25,34,67,9 10] [14,23,5 10,69,78] [16,25,34,7 10,89] } + [18,27,34,5 10,69] [16,25,3 10,49,78] [18,25,36,49,7 10] [14,27,3 10,58,69] [14,27,36,5 10,89] [16,23,49,58,7 10]
(A001263) T(5,3)=20 { 10 common solutions } + [12,38,45,67,9 10] [1 10,29,38,47,56] [1 10,25,34,69,78] [14,23,56,7 10,89] [12,3 10,47,56,89] [18,23,47,56,9 10] [1 10,29,36,45,78] [1 10,29,34,58,67] [1 10,27,34,56,89] [1 10,23,49,56,78].
(End)
From Roger Ford, Feb 23 2018: (Start)
For n>1, the number of semi-meanders with n top arches and k concentric starting arcs is a(n,k)= A000682(n-k).
/\ /\
Examples: a(5,1)=4 //\\ / \ /\
A000682(5-1)=4 ///\\\ / /\\ / \ /\ /\
/\////\\\\, /\//\//\\\, /\/\//\/\\, /\ //\\//\\
a(5,2)=2 /\ a(5,3)=1 /\
A000682(5-2)=2 /\ //\\ /\ /\ A000682(5-3)=1 //\\ /\
//\\///\\\, //\\//\\/\ ///\\\//\\
a(5,4)=1 /\
A000682(5-4)=1 //\\
///\\\
////\\\\/\. (End)
For n >= 4, 4*a(n-2) is the number of stamp foldings with leaf 1 on top, with leaf 2 in the second or n-th position, and with leaf n and leaf n-1 adjacent. Example for n = 5, 4*a(5-2) = 8: 12345, 12354, 12453, 12543, 13452, 13542, 14532, 15432. - Roger Ford, Aug 05 2019
From Martin Philp, Mar 25 2021: (Start)
The condition of having leaf n and leaf n-1 adjacent is the same as having one fewer leaf, and then counting each element twice. So the above comment is equivalent to saying:
For n >= 3, 2*a(n-1) is the number of stamp foldings with leaf 1 on top and leaf 2 in the second or n-th position. Example for n = 4, 2*a(4-1) = 4: 1234, 1243, 1342, 1432. Furthermore the number of stamp foldings with leaf 1 on top and leaf 2 in the n-th position is the same as the number of stamp foldings with leaf 1 on top and leaf 2 in the second position, as a cyclic rotation of 1 and mirroring the sequence maps one to the other. 1234, 1243 <-rot-> 2341, 2431 <-mirror-> 1432, 1342.
Hence, for n >= 2, a(n-1) is the number of stamp foldings having 1 and 2 (in this order) on top.
Not only is a(n) the number of stamp foldings with 1 on top, it is the number of stamp foldings with any particular leaf on top. This explains why A000136(n)= n*a(n).
(End)
The number of semi-meanders that in the first exterior top arch has exactly one arch of length one = Sum_{k=1..n-1} a(k). Example: for n = 5, Sum_{k=1..4} A000682(k) = 8, 10 = arch of length one, *start and end of first exterior top arch*; *10*11001100, *10*11110000, *10*11011000, *10*10110100, *1100*111000, *1100*110010, *111000*1100, *11110000*10. - Roger Ford, Jul 12 2020
REFERENCES
A. Sade, Sur les Chevauchements des Permutations, published by the author, Marseille, 1949.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
CombOS - Combinatorial Object Server, Generate meanders and stamp foldings
P. Di Francesco, O. Golinelli and E. Guitter, Meander, folding and arch statistics, arXiv:hep-th/9506030, 1995.
P. Di Francesco, O. Golinelli and E. Guitter, Meanders: a direct enumeration approach, arXiv:hep-th/9607039, 1996; Nucl. Phys. B 482 [ FS ] (1996) 497-535.
P. Di Francesco, Matrix model combinatorics: applications to folding and coloring, arXiv:math-ph/9911002, 1999.
I. Jensen, Home page
I. Jensen, A transfer matrix approach to the enumeration of plane meanders, J. Phys. A 33, 5953-5963 (2000).
I. Jensen and A. J. Guttmann, Critical exponents of plane meanders J. Phys. A 33, L187-L192 (2000).
J. E. Koehler, Folding a strip of stamps, J. Combin. Theory, 5 (1968), 135-152.
J. E. Koehler, Folding a strip of stamps, J. Combin. Theory, 5 (1968), 135-152. [Annotated, corrected, scanned copy]
Stéphane Legendre, Foldings and Meanders, arXiv preprint arXiv:1302.2025 [math.CO], 2013.
Stéphane Legendre, Illustration of initial terms
W. F. Lunnon, A map-folding problem, Math. Comp. 22 (1968), 193-199.
A. Panayotopoulos and P. Vlamos, Partitioning the Meandering Curves, Mathematics in Computer Science (2015) p 1-10.
Albert Sade, Sur les Chevauchements des Permutations, published by the author, Marseille, 1949. [Annotated scanned copy]
J. Sawada and R. Li, Stamp foldings, semi-meanders, and open meanders: fast generation algorithms, Electronic Journal of Combinatorics, Volume 19 No. 2 (2012), P#43 (16 pages).
J. Touchard, Contributions à l'étude du problème des timbres poste, Canad. J. Math., 2 (1950), 385-398.
FORMULA
For n >= 2, a(n) = 2^(n-2) + Sum_{x=3..n-2} (2^(n-x-2)*A301620(x)). - Roger Ford, Apr 23 2018
a(n) = 2^(n-2) + Sum_{j=4..n-1} (Sum_{k=3..floor((j+2)/2)} (A259689(j,k)*(k-2)*2^(n-1-j))). - Roger Ford, Dec 12 2018
a(n) = A000136(n)/n. - Jean-François Alcover, Sep 06 2019, from formula in A000136.
a(n) = (n-1)! - Sum_{k=3..n-1} (A223094(k) * (n-1)! / k!). - Roger Ford, Aug 23 2024
EXAMPLE
a(4) = 4: the four solutions with three crossings are the two solutions shown in A086441(3) together with their reflections about a North-South axis.
MATHEMATICA
A000136 = Import["https://oeis.org/A000136/b000136.txt", "Table"][[All, 2]];
a[n_] := A000136[[n]]/n;
Array[a, 45] (* Jean-François Alcover, Sep 06 2019 *)
CROSSREFS
A000560(n) = a(n+1)/2 (for n >= 2) gives number of nonisomorphic solutions (see also A086441).
Row sums of A259689.
KEYWORD
nonn,nice
EXTENSIONS
Sade gives the first 11 terms. Computed to n = 45 by Iwan Jensen.
Offset changed by Roger Ford, Feb 09 2018
STATUS
approved
Number of ways of folding a strip of n labeled stamps.
(Formerly M1614 N0630)
+10
15
1, 2, 6, 16, 50, 144, 462, 1392, 4536, 14060, 46310, 146376, 485914, 1557892, 5202690, 16861984, 56579196, 184940388, 622945970, 2050228360, 6927964218, 22930109884, 77692142980, 258360586368, 877395996200, 2929432171328, 9968202968958, 33396290888520, 113837957337750
OFFSET
1,2
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
M. B. Wells, Elements of Combinatorial Computing. Pergamon, Oxford, 1971, p. 238.
LINKS
Oswin Aichholzer, Florian Lehner, and Christian Lindorfer, Folding polyominoes into cubes, arXiv:2402.14965 [cs.CG], 2024. See p. 9.
T. Asano, E. D. Demaine, M. L. Demaine and R. Uehara, NP-completeness of generalized Kaboozle, J. Information Processing, 20 (July, 2012), 713-718.
CombOS - Combinatorial Object Server, Generate meanders and stamp foldings
R. Dickau, Stamp Folding
R. Dickau, Stamp Folding [Cached copy, pdf format, with permission]
J. E. Koehler, Folding a strip of stamps, J. Combin. Theory, 5 (1968), 135-152.
J. E. Koehler, Folding a strip of stamps, J. Combin. Theory, 5 (1968), 135-152. [Annotated, corrected, scanned copy]
W. F. Lunnon, A map-folding problem, Math. Comp. 22 (1968), 193-199.
A. Panayotopoulos, P. Vlamos, Partitioning the Meandering Curves, Mathematics in Computer Science (2015) p 1-10.
M. A. Sainte-Laguë, Les Réseaux (ou Graphes), Mémorial des Sciences Mathématiques, Fasc. 18, Gauthier-Villars, Paris, 1923, 64 pages. See p. 41.
M. A. Sainte-Laguë, Les Réseaux (ou Graphes), Mémorial des Sciences Mathématiques, Fasc. 18, Gauthier-Villars, Paris, 1923, 64 pages. See p. 41. [Incomplete annotated scan of title page and pages 18-51]
J. Sawada and R. Li, Stamp foldings, semi-meanders, and open meanders: fast generation algorithms, Electronic Journal of Combinatorics, Volume 19 No. 2 (2012), P#43 (16 pages).
Eric Weisstein's World of Mathematics, Stamp Folding
M. B. Wells, Elements of Combinatorial Computing, Pergamon, Oxford, 1971. [Annotated scanned copy of pages 237-240]
FORMULA
a(n) = n * A000682(n). - Andrew Howroyd, Dec 06 2015
CROSSREFS
Equals 2n*A000560 (and so 45 terms are known).
KEYWORD
nonn
STATUS
approved
Number of ways of folding a 2 X 2 X ... X 2 n-dimensional map.
(Formerly M1901 N0750)
+10
2
1, 2, 8, 96, 4608, 798720, 361267200, 362794844160
OFFSET
0,2
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
CROSSREFS
KEYWORD
hard,nonn,nice,more
AUTHOR
EXTENSIONS
a(7) from Sean A. Irvine, Dec 21 2017
STATUS
approved
Number of inequivalent ways a semi-infinite curve can cross a straight line n times.
+10
2
1, 1, 2, 4, 11, 27, 79, 213, 644, 1840, 5660
OFFSET
1,3
COMMENTS
This uses a too broad notion of equivalence. Besides the obvious reflection in a plane perpendicular to the straight line, if the end of the curve is in a free region of the plane, it is extended to infinity and the direction of the curve can then be reversed. A000560 uses a better definition of equivalence.
EXAMPLE
The a(3) = 2 solutions with 3 crossings. The line is drawn horizontally. The curve starts at oo and ends at X. The crossings are indicated by stars.
-- X
/ \ /
-----*----*----*----
/ \ /
/ --
/
oo
---
/ \
/ X \
/ | \
-----*----*----*----
/ | /
/ .---
/
oo
CROSSREFS
Isomorphism classes (using too generous a definition of isomorphism) from A000682. Cf. A000560, A001011.
KEYWORD
nonn,more
AUTHOR
N. J. A. Sloane, Sep 09 2003
STATUS
approved
Triangle read by rows: T(n,k) = number of permutations without overlaps in which the first increasing run has length k and the second element is not 2.
+10
2
0, 1, 0, 2, 0, 0, 5, 0, 1, 0, 12, 0, 2, 0, 0, 33, 1, 7, 0, 1, 0, 87, 2, 17, 0, 2, 0, 0, 252, 11, 55, 2, 9, 0, 1, 0, 703, 26, 145, 4, 22, 0, 2, 0, 0, 2105, 109, 467, 27, 81, 3, 11, 0, 1, 0, 6099, 280, 1296, 63, 215, 6, 27, 0, 2, 0, 0
OFFSET
2,4
COMMENTS
The 12th row of the triangle given in the Sade reference is incorrect, since the first column of this triangle is known (it is A000560).
REFERENCES
A. Sade, Sur les Chevauchements des Permutations, published by the author, Marseille, 1949
LINKS
Albert Sade, Sur les Chevauchements des Permutations, published by the author, Marseille, 1949. [Annotated scanned copy]
EXAMPLE
Triangle begins:
0;
1, 0;
2, 0, 0;
5, 0, 1, 0;
12, 0, 2, 0, 0;
33, 1, 7, 0, 1, 0;
87, 2, 17, 0, 2, 0, 0;
252, 11, 55, 2, 9, 0, 1, 0;
703, 26, 145, 4, 22, 0, 2, 0, 0;
2105, 109, 467, 27, 81, 3, 11, 0, 1, 0;
...
PROG
(PARI)
Overlapfree(v)={for(i=1, #v, for(j=i+1, v[i]-1, if(v[j]>v[i], return(0)))); 1}
Chords(u)={my(n=2*#u, v=vector(n), s=u[#u]); if(s%2==0, s=n+1-s); for(i=1, #u, my(t=n+1-s); s=u[i]; if(s%2==0, s=n+1-s); v[s]=t; v[t]=s); v}
FirstRunLen(v)={my(e=1); for(i=1, #v, if(v[i]==e, e++)); e-2}
row(n)={my(r=vector(n-1)); if(n>=2, forperm(n, v, if(v[1]<>1, break); if(v[2]<>2 && Overlapfree(Chords(v)), r[FirstRunLen(v)]++))); r}
for(n=2, 8, print(row(n))) \\ Andrew Howroyd, Dec 07 2018
CROSSREFS
Row sums excluding the first column give A259702.
First column is A000560.
Cf. A259703.
KEYWORD
nonn,tabl,more
AUTHOR
N. J. A. Sloane, Jul 05 2015
EXTENSIONS
a(49) corrected and a(57)-a(67) from Andrew Howroyd, Dec 07 2018
STATUS
approved
Number of ways of folding an n X n sheet of stamps.
(Formerly M4587 N1956)
+10
1
1, 8, 1368, 300608, 186086600, 123912532224, 129950723279272
OFFSET
0,2
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
W. F. Lunnon, Multi-dimensional map-folding, Computer Journal 14 1971 75-80.
Eric Weisstein's World of Mathematics, Map Folding
CROSSREFS
KEYWORD
nonn,hard,more
EXTENSIONS
a(6)-a(7) from Sean A. Irvine, Jan 11 2018
STATUS
approved
Triangle read by rows: T(n,k) = number of permutations without overlaps in which the first increasing run has length k.
+10
1
1, 1, 1, 2, 1, 1, 5, 2, 2, 1, 12, 5, 4, 2, 1, 33, 13, 12, 4, 3, 1, 87, 35, 30, 12, 6, 3, 1, 252, 98, 90, 32, 21, 6, 4, 1, 703, 278, 243, 94, 54, 21, 8, 4, 1, 2105, 812, 745, 270, 175, 57, 32, 8, 5, 1, 6099, 2385, 2108, 808, 485, 181, 84, 32, 10, 5, 1
OFFSET
2,4
COMMENTS
The 12th row of the triangle (as given in the reference) is definitely wrong, since the first column of this triangle is known (it is A000560). The row sums are also known - see A000682.
From Roger Ford, Jul 06 2016: (Start)
To determine the first increasing run of the permutation 176852943 start on the left and move to the right counting the consecutive integers.
(1)7685(2)94(3). This permutation a has a first run of (3-1)=2. The permutation 123465 has a first run of (5-1)=4. (1)(2)(3)(4)6(5). (End)
REFERENCES
A. Sade, Sur les Chevauchements des Permutations, published by the author, Marseille, 1949
LINKS
Albert Sade, Sur les Chevauchements des Permutations, published by the author, Marseille, 1949. [Annotated scanned copy]
EXAMPLE
Triangle begins:
1;
1, 1;
2, 1, 1;
5, 2, 2, 1;
12, 5, 4, 2, 1;
33, 13, 12, 4, 3, 1;
87, 35, 30, 12, 6, 3, 1;
252, 98, 90, 32, 21, 6, 4, 1;
703, 278, 243, 94, 54, 21, 8, 4, 1;
2105, 812, 745, 270, 175, 57, 32, 8, 5, 1;
6099, 2385, 2108, 808, 485, 181, 84, 32, 10, 5, 1;
...
PROG
(PARI)
Overlapfree(v)={for(i=1, #v, for(j=i+1, v[i]-1, if(v[j]>v[i], return(0)))); 1}
Chords(u)={my(n=2*#u, v=vector(n), s=u[#u]); if(s%2==0, s=n+1-s); for(i=1, #u, my(t=n+1-s); s=u[i]; if(s%2==0, s=n+1-s); v[s]=t; v[t]=s); v}
FirstRunLen(v)={my(e=1); for(i=1, #v, if(v[i]==e, e++)); e-2}
row(n)={my(r=vector(n-1)); if(n>=2, forperm(n, v, if(v[1]<>1, break); if(Overlapfree(Chords(v)), r[FirstRunLen(v)]++))); r}
for(n=2, 8, print(row(n))) \\ Andrew Howroyd, Dec 07 2018
CROSSREFS
Row sums are A000682. First column is A000560.
Cf. A259701.
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Jul 05 2015
EXTENSIONS
Corrected and extended by Roger Ford, Jul 06 2016
STATUS
approved
A000136(n)/2.
(Formerly N1106)
+10
0
1, 3, 8, 25, 72, 231, 696, 2268, 7030, 23155, 73188, 242957, 778946, 2601345, 8430992, 28289598, 92470194, 311472985, 1025114180, 3463982109, 11465054942, 38846071490, 129180293184, 438697998100, 1464716085664, 4984101484479, 16698145444260, 56918978668875
OFFSET
2,2
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jun 11 2012
STATUS
approved

Search completed in 0.017 seconds