Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Search: a001014 -id:a001014
     Sort: relevance | references | number | modified | created      Format: long | short | data
Third partial sums of sixth powers (A001014).
+20
23
1, 67, 927, 6677, 32942, 126378, 404634, 1129854, 2833479, 6515509, 13947505, 28115451, 53846156, 98669156, 173975076, 296541132, 490504893, 789878583, 1241708083, 1909993393, 2880500634, 4266609710, 6216356510, 8920844010, 12624212835, 17635378761
OFFSET
1,2
COMMENTS
This is one of a sequence of arrays that are the convolutions of the zero-padded sequences binomial(2n-1+k,k) with the Eulerian polynomials E(n,x) of A008292, represented by E(n,x) (1-x)^(-2n), which generate increasing partial sums of powers of integers:
n= 2) (1 + 4*x + x^2)/(1-x)^4 is the o.g.f. of A000578, the convolution of (1,4,1) with A000292, giving the powers of m^3.
n= 3) (1 + 11*x + 11*x^2 + x^3)/(1-x)^6 is the o.g.f. of A000538, convolution of (1,11,11,1) with A000389, giving the partial sums of m^4.
n= 4) (1 + 26*x + 66*x^2 + 26*x^3 + x^4)/(1-x)^8, the o.g.f. of A101092, convolution of (1,26,66,26,1) with A000580, the second partial sums of m^5
n= 5) (1 + 57*x + 302*x^2 + 302*x^3 + 57*x^4 + x^5)/(1-x)^10, the o.g.f. of A254460, convolution of (1,57,302,302,57,1) with A000582, giving the third partial sums of m^6. - Tom Copeland, Dec 07 2015
FORMULA
a(n) = n*(1+n)*(2+n)*(3+n)*(3+2*n)*(2 -30*n +35*n^2 +30*n^3 +5*n^4)/5040.
G.f.: x*(1+x)*(1 +56*x +246*x^2 +56*x^3 +x^4)/(1-x)^10. - Colin Barker, Feb 04 2015
MAPLE
seq(binomial(n+3, 4)*(2*n+3)*(5*n^4 +30*n^3 +35*n^2 -30*n +2)/210, n=1..30); # G. C. Greubel, Aug 28 2019
MATHEMATICA
Table[n(1+n)(2+n)(3+n)(3+2n)(2 -30n +35n^2 +30n^3 +5n^4)/5040, {n, 30}] (* or *) CoefficientList[Series[(x+1)(x^4 +56x^3 +246x^2 +56x +1)/(x - 1)^10, {x, 0, 30}], x] (* Vincenzo Librandi, Feb 05 2015 *)
PROG
(PARI) vector(30, n, n*(1+n)*(2+n)*(3+n)*(3+2*n)*(2-30*n+35*n^2+30*n^3+5*n^4)/5040) \\ Colin Barker, Feb 04 2015
(Magma) [n*(1+n)*(2+n)*(3+n)*(3+2*n)*(2-30*n+35*n^2+30*n^3+ 5*n^4)/5040: n in [1..30]]; // Vincenzo Librandi, Feb 05 2015
(Sage) [binomial(n+3, 4)*(2*n+3)*(5*n^4 +30*n^3 +35*n^2 -30*n +2)/210 for n in (1..30)] # G. C. Greubel, Aug 28 2019
(GAP) List([1..30], n-> Binomial(n+3, 4)*(2*n+3)*(5*n^4 +30*n^3 +35*n^2 -30*n +2)/210); # G. C. Greubel, Aug 28 2019
(Python)
def A254640(n): return n*(n*(n*(n*(n*(n*(n*(n*(10*n + 135) + 720) + 1890) + 2394) + 945) - 640) - 450) + 36)//5040 # Chai Wah Wu, Dec 07 2021
KEYWORD
nonn,easy
AUTHOR
Luciano Ancora, Feb 04 2015
STATUS
approved
Second partial sums of sixth powers (A001014).
+20
9
1, 66, 860, 5750, 26265, 93436, 278256, 725220, 1703625, 3682030, 7431996, 14167946, 25730705, 44823000, 75305920, 122566056, 193963761, 299373690, 451829500, 668285310, 970507241, 1386109076, 1949746800, 2704487500
OFFSET
1,2
LINKS
C. P. Neuman and D. I. Schonbach, Evaluation of sums of convolved powers using Bernoulli numbers, SIAM Rev. 19 (1977), no. 1, 90--99. MR0428678 (55 #1698). See Table 1. - N. J. A. Sloane, Mar 23 2014
Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
FORMULA
a(n) = n*(1 + n)^2*(2 + n)*(-1 + n*(2 + n))*(-2 + 3*n*(2 + n))/168.
G.f.: x*(1+x)*(1 + 56*x + 246*x^2 + 56*x^3 + x^4)/(1-x)^9. - Colin Barker, Dec 18 2012
a(n) = Sum_{i=1..n} i*(n+1-i)^6, by the definition. - Bruno Berselli, Jan 31 2014
a(n) = 2*a(n-1) - a(n-2) + n^6. - Luciano Ancora, Jan 08 2015
MAPLE
f:=n->(3*n^8-14*n^6+21*n^4-10*n^2)/168;
[seq(f(n), n=0..50)]; # N. J. A. Sloane, Mar 23 2014
MATHEMATICA
CoefficientList[Series[(x+1)(x^4+56x^3+246x^2+56x+1)/(1-x)^9, {x, 0, 40}], x] (* Vincenzo Librandi, Mar 24 2014 *)
Nest[Accumulate, Range[30]^6, 2] (* or *) LinearRecurrence[{9, -36, 84, -126, 126, -84, 36, -9, 1}, {1, 66, 860, 5750, 26265, 93436, 278256, 725220, 1703625}, 30] (* Harvey P. Dale, Jun 05 2019 *)
PROG
(Magma) [n*(1+n)^2*(2+n)*(-1+n*(2+n))*(-2+3*n*(2+n))/168: n in [1..40]]; // Vincenzo Librandi, Mar 24 2014
(PARI) vector(30, n, m=n+1; m^2*(3*m^6 -14*m^4 +21*m^2 -10)/168) \\ G. C. Greubel, Aug 28 2019
(Sage) [n^2*(3*n^6 -14*n^4 +21*n^2 -10)/168 for n in (2..30)] # G. C. Greubel, Aug 28 2019
(GAP) List([2..30], n-> n^2*(3*n^6 -14*n^4 +21*n^2 -10)/168); # G. C. Greubel, Aug 28 2019
CROSSREFS
Cf. A000540.
KEYWORD
nonn,easy
AUTHOR
Cecilia Rossiter (cecilia(AT)noticingnumbers.net), Dec 15 2004
EXTENSIONS
Edited by Ralf Stephan, Dec 16 2004
STATUS
approved
Fourth partial sums of sixth powers (A001014).
+20
7
1, 68, 995, 7672, 40614, 166992, 571626, 1701480, 4534959, 11050468, 24997973, 53113424, 106959580, 205628736, 379603812, 676144944, 1166649837, 1956528420, 3198236503, 5108229896, 7988730530, 12255340240
OFFSET
1,2
FORMULA
G.f.: x*(1 + 57*x + 302*x^2 + 302*x^3 + 57*x^4 + x^5)/(1 - x)^11.
a(n) = n*(1 + n)*(2 + n)^2*(3 + n)*(4 + n)*(- 1 - 8*n + 14*n^2 + 8*n^3 + n^4)/5040.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) + n^6.
EXAMPLE
First differences: 1, 63, 665, 3367, 11529, 31031, ... (A022522)
--------------------------------------------------------------------------
The sixth powers: 1, 64, 729, 4096, 15625, 46656, ... (A001014)
--------------------------------------------------------------------------
First partial sums: 1, 65, 794, 4890, 20515, 67171, ... (A000540)
Second partial sums: 1, 66, 860, 5750, 26265, 93436, ... (A101093)
Third partial sums: 1, 67, 927, 6677, 32942, 126378, ... (A101099)
Fourth partial sums: 1, 68, 995, 7672, 40614, 166992, ... (this sequence)
MAPLE
seq(binomial(n+4, 5)*(n+2)*((n^2+4*n-1)^2-2)/42, n=1..30); # G. C. Greubel, Aug 28 2019
MATHEMATICA
Table[n (1 + n) (2 + n)^2 (3 + n) (4 + n) (- 1 - 8 n + 14 n^2 + 8 n^3 + n^4)/5040, {n, 22}] (* or *)
Accumulate[Accumulate[Accumulate[Accumulate[Range[22]^6]]]] (* or *)
CoefficientList[Series[(- 1 - 57 x - 302 x^2 - 302 x^3 - 57 x^4 - x^5)/(- 1 + x)^11, {x, 0, 21}], x]
Nest[Accumulate, Range[30]^6, 4] (* or *) LinearRecurrence[{11, -55, 165, -330, 462, -462, 330, -165, 55, -11, 1}, {1, 68, 995, 7672, 40614, 166992, 571626, 1701480, 4534959, 11050468, 24997973}, 30] (* Harvey P. Dale, Dec 27 2015 *)
PROG
(PARI) vector(30, n, binomial(n+4, 5)*(n+2)*((n^2+4*n-1)^2-2)/42) \\ G. C. Greubel, Aug 28 2019
(Magma) [Binomial(n+4, 5)*(n+2)*((n^2+4*n-1)^2-2)/42: n in [1..30]]; // G. C. Greubel, Aug 28 2019
(Sage) [binomial(n+4, 5)*(n+2)*((n^2+4*n-1)^2-2)/42 for n in (1..30)] # G. C. Greubel, Aug 28 2019
(GAP) List([1..30], n-> Binomial(n+4, 5)*(n+2)*((n^2+4*n-1)^2-2)/42); # G. C. Greubel, Aug 28 2019
CROSSREFS
Cf. A254644 (fourth partial sums of fifth powers), A254646 (fourth partial sums of seventh powers).
KEYWORD
nonn,easy
AUTHOR
Luciano Ancora, Feb 05 2015
STATUS
approved
Fifth partial sums of sixth powers (A001014).
+20
7
1, 69, 1064, 8736, 49350, 216342, 787968, 2489448, 7024407, 18074875, 43072848, 96186272, 203145852, 408774588, 788378400, 1464523344, 2631173181, 4587701601, 7785938104, 12894168000, 20882898530, 33138238770
OFFSET
1,2
FORMULA
G.f.: (x + 57*x^2 + 302*x^3 + 302*x^4 + 57*x^5 + x^6)/(- 1 + x)^12.
a(n) = n*(1 + n)*(2 + n)*(3 + n)*(4 + n)*(5 + n)*(5 + 2*n)*(- 3 + 5*n + n^2)*(4 + 15*n + 3*n^2)/332640.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) + n^6.
EXAMPLE
First differences: 1, 63, 665, 3367, 11529, ... (A022522)
--------------------------------------------------------------------------
The sixth powers: 1, 64, 729, 4096, 15625, ... (A001014)
--------------------------------------------------------------------------
First partial sums: 1, 65, 794, 4890, 20515, ... (A000540)
Second partial sums: 1, 66, 860, 5750, 26265, ... (A101093)
Third partial sums: 1, 67, 927, 6677, 32942, ... (A254640)
Fourth partial sums: 1, 68, 995, 7672, 40614, ... (A254645)
Fifth partial sums: 1, 69, 1064, 8736, 49350, ... (this sequence)
MATHEMATICA
Table[n (1 + n) (2 + n) (3 + n) (4 + n) (5 + n) (5 + 2*n) (- 3 + 5*n + n^2) (4 + 15 n + 3 n^2)/332640, {n, 22}] (* or *)
CoefficientList[Series[(1 + 57 x + 302 x^2 + 302 x^3 + 57 x^4 + x^5)/(- 1 + x)^12, {x, 0, 21}], x]
KEYWORD
nonn,easy
AUTHOR
Luciano Ancora, Feb 12 2015
STATUS
approved
Sixth partial sums of sixth powers (A001014).
+20
6
1, 70, 1134, 9870, 59220, 275562, 1063530, 3552978, 10577385, 28652260, 71725108, 167911380, 371057232, 779831820, 1568210220, 3032733564, 5663906745, 10251608346, 18037546450, 30931714450, 51814612980, 84952851750, 136562787270, 215565263550, 334584493425
OFFSET
1,2
FORMULA
G.f.: (-x - 57*x^2 - 302*x^3 - 302*x^4 - 57*x^5 - x^6)/(- 1 + x)^13.
a(n) = n*(1 + n)*(2 + n)*(3 + n)^2*(4 + n)*(5 + n)*(6 + n)*(-3 + 5*n + n^2)*(3 + 7*n + n^2)/665280.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) + n^6.
Sum_{n>=1} 1/a(n) = 25622179/76545 - 3080*Pi^2/81 + 149600*Pi*tan(sqrt(37)*Pi/2)/(243*sqrt(37)). - Amiram Eldar, Jan 27 2022
EXAMPLE
First differences: 1, 63, 665, 3367, 11529, ... (A022522)
--------------------------------------------------------------------------
The sixth powers: 1, 64, 729, 4096, 15625, ... (A001014)
--------------------------------------------------------------------------
First partial sums: 1, 65, 794, 4890, 20515, ... (A000540)
Second partial sums: 1, 66, 860, 5750, 26265, ... (A101093)
Third partial sums: 1, 67, 927, 6677, 32942, ... (A254640)
Fourth partial sums: 1, 68, 995, 7672, 40614, ... (A254645)
Fifth partial sums: 1, 69, 1064, 8736, 49350, ... (A254683)
Sixth partial sums: 1, 70, 1134, 9870, 59220, ... (this sequence)
MATHEMATICA
Table[n (1 + n) (2 + n) (3 + n)^2 (4 + n) (5 + n) (6 + n) (- 3 + 5 n + n^2) (3 + 7 n + n^2)/665280, {n, 22}] (* or *) CoefficientList[Series[(- 1 - 57 x - 302 x^2 - 302 x^3 - 57 x^4 - x^5)/(- 1 + x)^13, {x, 0, 28}], x]
Nest[Accumulate, Range[30]^6, 6] (* Harvey P. Dale, Oct 02 2015 *)
PROG
(Magma) [n*(1+n)*(2+n)*(3+n)^2*(4+n)*(5+n)*(6+n)*(-3+5*n+n^2)* (3+7*n+n^2)/665280: n in [1..30]]; // Vincenzo Librandi, Feb 15 2015
(PARI) vector(50, n, n*(1 + n)*(2 + n)*(3 + n)^2*(4 + n)*(5 + n)*(6 + n)*(-3 + 5*n + n^2)*(3 + 7*n + n^2)/665280) \\ Derek Orr, Feb 19 2015
KEYWORD
nonn,easy
AUTHOR
Luciano Ancora, Feb 15 2015
STATUS
approved
Seventh partial sums of sixth powers (A001014).
+20
5
1, 71, 1205, 11075, 70295, 345857, 1409387, 4962365, 15539750, 44192010, 115917118, 283828498, 654885730, 1434717550, 3002927770, 6035661334, 11699568079, 21951176425, 39988722875, 70920437325, 122735050305
OFFSET
1,2
FORMULA
G.f.: (x + 57*x^2 + 302*x^3 + 302*x^4 + 57*x^5 + x^6)/(- 1 + x)^14.
a(n) = (n*(1 + n)*(2 + n)*(3 + n)*(4 + n)*(5 + n)*(6 + n)*(7 + n)*(7 + 2*n)*(- 49 + 147*n^2 + 42*n^3 + 3*n^4))/51891840.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) + n^6.
EXAMPLE
First differences: 1, 63, 665, 3367, 11529, ... (A022522)
--------------------------------------------------------------------
The sixth powers: 1, 64, 729, 4096, 15625, ... (A001014)
--------------------------------------------------------------------
First partial sums: 1, 65, 794, 4890, 20515, ... (A000540)
Second partial sums: 1, 66, 860, 5750, 26265, ... (A101093)
Third partial sums: 1, 67, 927, 6677, 32942, ... (A254640)
Fourth partial sums: 1, 68, 995, 7672, 40614, ... (A254645)
Fifth partial sums: 1, 69, 1064, 8736, 49350, ... (A254683)
Sixth partial sums: 1, 70, 1134, 9870, 59220, ... (A254472)
Seventh partial sums: 1, 71, 1205, 11075, 70295, ... (this sequence)
MATHEMATICA
Table[(n (1 + n) (2 + n) (3 + n) (4 + n) (5 + n) (6 + n) (7 + n) (7 + 2 n) (- 49 + 147 n^2 + 42 n^3 + 3 n^4))/51891840, {n, 21}] (* or *)
CoefficientList[Series[(1 + 57 x + 302 x^2 + 302 x^3 + 57 x^4 + x^5)/(- 1 + x)^14, {x, 0, 20}], x]
KEYWORD
nonn,easy
AUTHOR
Luciano Ancora, Feb 17 2015
STATUS
approved
Exponential transform of the sixth powers A001014.
+20
2
1, 1, 65, 922, 19685, 572036, 16379797, 542459296, 20028938953, 787480005520, 33447797179721, 1522102664036384, 73362723948758125, 3738119667151161280, 200625910519541044189, 11290451562860730241216, 664399657108812332697233, 40781390340823661046136064
OFFSET
0,3
LINKS
FORMULA
E.g.f.: exp(exp(x)*(x^6+15*x^5+65*x^4+90*x^3+31*x^2+x)).
MAPLE
a:= proc(n) option remember; `if`(n=0, 1,
add(binomial(n-1, j-1)*j^6*a(n-j), j=1..n))
end:
seq(a(n), n=0..25);
CROSSREFS
Column k=6 of A279636.
Cf. A001014.
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Dec 16 2016
STATUS
approved
Exponentially odd numbers.
+10
106
1, 2, 3, 5, 6, 7, 8, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 24, 26, 27, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 46, 47, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 82, 83, 85, 86, 87, 88, 89, 91, 93, 94, 95, 96, 97
OFFSET
1,2
COMMENTS
The sequence is formed by 1 and the numbers whose prime power factorization contains only odd exponents.
The density of the sequence is the constant given by A065463.
Except for the first term the same as A002035. - R. J. Mathar, Feb 07 2016
Also numbers k all of whose divisors are bi-unitary divisors (i.e., A286324(k) = A000005(k)). - Amiram Eldar, Dec 19 2018
The term "exponentially odd integers" was apparently coined by Cohen (1960). These numbers were also called "unitarily 2-free", or "2-skew", by Cohen (1961). - Amiram Eldar, Jan 22 2024
LINKS
Eckford Cohen, Arithmetical functions associated with the unitary divisors of an integer, Mathematische Zeitschrift, Vol. 74 (1960), pp. 66-80.
Eckford Cohen, Some sets of integers related to the k-free integers, Acta Sci. Math. (Szeged), Vol. 22, No. 3-4 (1961), pp. 223-233.
Vladimir Shevelev, Exponentially S-numbers, arXiv:1510.05914 [math.NT], 2015.
Vladimir Shevelev, Set of all densities of exponentially S-numbers, arXiv preprint arXiv:1511.03860 [math.NT], 2015.
Vladimir Shevelev, S-exponential numbers, Acta Arithmetica, Vol. 175(2016), 385-395.
D. Suryanarayana and R. Sita Rama Chandra Rao, Distribution of unitarily k-free integers, Journal of the Australian Mathematical Society, Vol. 20 , No. 2 (1975), pp. 129-141.
FORMULA
Sum_{a(n)<=x} 1 = C*x + O(sqrt(x)*log x*e^(c*sqrt(log x)/(log(log x))), where c = 4*sqrt(2.4/log 2) = 7.44308... and C = Product_{prime p} (1 - 1/p*(p + 1)) = 0.7044422009991... (A065463).
Sum_{n>=1} 1/a(n)^s = zeta(2*s) * Product_{p prime} (1 + 1/p^s - 1/p^(2*s)), s>1. - Amiram Eldar, Sep 26 2023
MATHEMATICA
Select[Range@ 100, AllTrue[Last /@ FactorInteger@ #, OddQ] &] (* Version 10, or *)
Select[Range@ 100, Times @@ Boole[OddQ /@ Last /@ FactorInteger@ #] == 1 &] (* Michael De Vlieger, Feb 02 2016 *)
PROG
(PARI) isok(n)=my(f = factor(n)); for (k=1, #f~, if (!(f[k, 2] % 2), return (0))); 1; \\ Michel Marcus, Feb 02 2016
(Python)
from itertools import count, islice
from sympy import factorint
def A268335_gen(startvalue=1): # generator of terms >= startvalue
return filter(lambda n:all(e&1 for e in factorint(n).values()), count(max(startvalue, 1)))
A268335_list = list(islice(A268335_gen(), 20)) # Chai Wah Wu, Jun 22 2023
KEYWORD
nonn
AUTHOR
Vladimir Shevelev, Feb 01 2016
STATUS
approved
a(n) = sigma_6(n), the sum of the 6th powers of the divisors of n.
+10
93
1, 65, 730, 4161, 15626, 47450, 117650, 266305, 532171, 1015690, 1771562, 3037530, 4826810, 7647250, 11406980, 17043521, 24137570, 34591115, 47045882, 65019786, 85884500, 115151530, 148035890, 194402650, 244156251, 313742650, 387952660, 489541650, 594823322, 741453700
OFFSET
1,2
COMMENTS
If the canonical factorization of n into prime powers is the product of p^e(p) then sigma_k(n) = Product_p ((p^((e(p)+1)*k))-1)/(p^k-1).
Sum_{d|n} 1/d^k is equal to sigma_k(n)/n^k. So sequences A017665-A017712 also give the numerators and denominators of sigma_k(n)/n^k for k = 1..24. The power sums sigma_k(n) are in sequences A000203 (k=1), A001157-A001160 (k=2,3,4,5), A013954-A013972 for k = 6,7,...,24. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 05 2001
Inverse Mobius transform of A001014. - R. J. Mathar, Oct 13 2011
FORMULA
G.f.: Sum_{k>=1} k^6*x^k/(1-x^k). - Benoit Cloitre, Apr 21 2003
L.g.f.: -log(Product_{k>=1} (1 - x^k)^(k^5)) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, May 06 2017
From Amiram Eldar, Oct 29 2023: (Start)
Multiplicative with a(p^e) = (p^(6*e+6)-1)/(p^6-1).
Dirichlet g.f.: zeta(s)*zeta(s-6).
Sum_{k=1..n} a(k) = zeta(7) * n^7 / 7 + O(n^8). (End)
MAPLE
A013954 := proc(n)
numtheory[sigma][6](n) ;
end proc: # R. J. Mathar, Oct 13 2011
MATHEMATICA
lst={}; Do[AppendTo[lst, DivisorSigma[6, n]], {n, 5!}]; lst (* Vladimir Joseph Stephan Orlovsky, Mar 11 2009 *)
PROG
(Sage) [sigma(n, 6)for n in range(1, 24)] # Zerinvary Lajos, Jun 04 2009
(PARI) a(n)=sigma(n, 6) \\ Charles R Greathouse IV, Apr 28, 2011
(Magma) [DivisorSigma(6, n): n in [1..30]]; // Bruno Berselli, Apr 10 2013
KEYWORD
nonn,mult,easy
STATUS
approved
Square triangular numbers: numbers that are both triangular and square.
(Formerly M5259 N2291)
+10
83
0, 1, 36, 1225, 41616, 1413721, 48024900, 1631432881, 55420693056, 1882672131025, 63955431761796, 2172602007770041, 73804512832419600, 2507180834294496361, 85170343853180456676, 2893284510173841030625, 98286503002057414584576, 3338847817559778254844961, 113422539294030403250144100
OFFSET
0,3
COMMENTS
Satisfies a recurrence of S_r type for r=36: 0, 1, 36 and a(n-1)*a(n+1)=(a(n)-1)^2. First observed by Colin Dickson in alt.math.recreational, Mar 07 2004. - Rainer Rosenthal, Mar 14 2004
For every n, a(n) is the first of three triangular numbers in geometric progression. The third number in the progression is a(n+1). The middle triangular number is sqrt(a(n)*a(n+1)). Chen and Fang prove that four distinct triangular numbers are never in geometric progression. - T. D. Noe, Apr 30 2007
The sum of any two terms is never equal to a Fermat number. - Arkadiusz Wesolowski, Feb 14 2012
Conjecture: No a(2^k), where k is a nonnegative integer, can be expressed as a sum of a positive square number and a positive triangular number. - Ivan N. Ianakiev, Sep 19 2012
For n=2k+1, A010888(a(n))=1 and for n=2k, k > 0, A010888(a(n))=9. - Ivan N. Ianakiev, Oct 12 2013
For n > 0, these are the triangular numbers which are the sum of two consecutive triangular numbers, for instance 36 = 15 + 21 and 1225 = 595 + 630. - Michel Marcus, Feb 18 2014
The sequence is the case P1 = 36, P2 = 68, Q = 1 of the 3-parameter family of 4th order linear divisibility sequences found by Williams and Guy. - Peter Bala, Apr 03 2014
For n=2k, k > 0, a(n) is divisible by 12 and is therefore abundant. I conjecture that for n=2k+1 a(n) is deficient [true for k up to 43 incl.]. - Ivan N. Ianakiev, Sep 30 2014
The conjecture is true for all k > 0 because: For n=2k+1, k > 0, a(n) is odd. If a(n) is a prime number, it is deficient; otherwise a(n) has one or two distinct prime factors and is therefore deficient again. So for n=2k+1, k > 0, a(n) is deficient. - Muniru A Asiru, Apr 13 2016
Numbers k for which A139275(k) is a perfect square. - Bruno Berselli, Jan 16 2018
REFERENCES
A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 193.
L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923; see Vol. 2, p. 10.
Martin Gardner, Time Travel and other Mathematical Bewilderments, Freeman & Co., 1988, pp. 16-17.
Miodrag S. Petković, Famous Puzzles of Great Mathematicians, Amer. Math. Soc. (AMS), 2009, p. 64.
J. H. Silverman, A Friendly Introduction to Number Theory, Prentice Hall, 2001, p. 196.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 93.
LINKS
Kade Robertson, Table of n, a(n) for n = 0..600 [This replaces an earlier b-file computed by T. D. Noe]
Nikola Adžaga, Andrej Dujella, Dijana Kreso, and Petra Tadić, On Diophantine m-tuples and D(n)-sets, 2018.
Muniru A. Asiru, All square chiliagonal numbers, International Journal of Mathematical Education in Science and Technology, Volume 47, 2016 - Issue 7.
Tom Beldon and Tony Gardiner, Triangular numbers and perfect squares, The Mathematical Gazette, 2002, pp. 423-431, esp pp. 424-426.
P. Catarino, H. Campos, and P. Vasco, On some identities for balancing and cobalancing numbers, Annales Mathematicae et Informaticae, 45 (2015) pp. 11-24.
Kwang-Wu Chen and Yu-Ren Pan, Greatest Common Divisors of Shifted Horadam Sequences, J. Int. Seq., Vol. 23 (2020), Article 20.5.8.
Yong-Gao Chen and Jin-Hui Fang, Triangular numbers in geometric progression, INTEGERS 7 (2007), #A19.
F. Javier de Vega, On the parabolic partitions of a number, J. Alg., Num. Theor., and Appl. (2023) Vol. 61, No. 2, 135-169.
Colin Dickson et al., ratio of integers = sqrt(2), thread in newsgroup alt.math.recreational, March 7, 2004.
H. G. Forder, A Simple Proof of a Result on Diophantine Approximation, Math. Gaz., 47 (1963), 237-238.
Bill Gosper, The Triangular Squares, 2014.
Jon Grantham and Hester Graves, The abc Conjecture Implies That Only Finitely Many Cullen Numbers Are Repunits, arXiv:2009.04052 [math.NT], 2020. Mentions this sequence.
Gillian Hatch, Pythagorean Triples and Triangular Square Numbers, Mathematical Gazette 79 (1995), 51-55.
P. Lafer, Discovering the square-triangular numbers, Fib. Quart., 9 (1971), 93-105.
Roger B. Nelson, Multi-Polygonal Numbers, Mathematics Magazine, Vol. 89, No. 3 (June 2016), pp. 159-164.
A. Nowicki, The numbers a^2+b^2-dc^2, J. Int. Seq. 18 (2015) # 15.2.3.
J. L. Pietenpol, A. V. Sylwester, E. Just, and R. M. Warten, Problem E 1473, Amer. Math. Monthly, Vol. 69, No. 2 (Feb. 1962), pp. 168-169. (From the editorial note on p. 169 of this source, we learn that the question about the existence of perfect squares in the sequence of triangular numbers cropped up in the Euler-Goldbach Briefwechsel of 1730; the translation into English of the relevant letters can be found at Correspondence of Leonhard Euler with Christian Goldbach (part II), pp. 614-615.) - José Hernández, May 24 2022
Vladimir Pletser, Recurrent Relations for Multiple of Triangular Numbers being Triangular Numbers, arXiv:2101.00998 [math.NT], 2020.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
D. A. Q., Triangular square numbers - a postscript, Math. Gaz., 56 (1972), 311-314.
K. Ramsey, Generalized Proof re Square Triangular Numbers, digest of 2 messages in Triangular_and_Fibonacci_Numbers Yahoo group, May 27, 2005 - Oct 10, 2011.
Jaap Spies, A Bit of Math, The Art of Problem Solving, Jaap Spies Publishers (2019).
UWC, Problem A, Nieuw Archief voor Wiskunde, Dec 2004; Jaap Spies, Solution.
Michel Waldschmidt, Continued fractions, Ecole de recherche CIMPA-Oujda, Théorie des Nombres et ses Applications, 18 - 29 mai 2015: Oujda (Maroc).
Eric Weisstein's World of Mathematics, Square Triangular Number.
Eric Weisstein's World of Mathematics, Triangular Number.
H. C. Williams and R. K. Guy, Some fourth-order linear divisibility sequences, Intl. J. Number Theory 7 (5) (2011) 1255-1277.
H. C. Williams and R. K. Guy, Some Monoapparitic Fourth Order Linear Divisibility Sequences, Integers, Volume 12A (2012) The John Selfridge Memorial Volume.
FORMULA
a(0) = 0, a(1) = 1; for n >= 2, a(n) = 34 * a(n-1) - a(n-2) + 2.
G.f.: x*(1 + x) / (( 1 - x )*( 1 - 34*x + x^2 )).
a(n-1) * a(n+1) = (a(n)-1)^2. - Colin Dickson, posting to alt.math.recreational, Mar 07 2004
If L is a square-triangular number, then the next one is 1 + 17*L + 6*sqrt(L + 8*L^2). - Lekraj Beedassy, Jun 27 2001
a(n) - a(n-1) = A046176(n). - Sophie Kuo (ejiqj_6(AT)yahoo.com.tw), May 27 2006
a(n) = A001109(n)^2 = A001108(n)*(A001108(n)+1)/2 = (A000129(n)*A001333(n))^2 = (A000129(n)*(A000129(n) + A000129(n-1)))^2. - Henry Bottomley, Apr 19 2000
a(n) = (((17+12*sqrt(2))^n) + ((17-12*sqrt(2))^n)-2)/32. - Bruce Corrigan (scentman(AT)myfamily.com), Oct 26 2002
Limit_{n->oo} a(n+1)/a(n) = 17 + 12*sqrt(2). See UWC problem link and solution. - Jaap Spies, Dec 12 2004
From Antonio Alberto Olivares, Nov 07 2003: (Start)
a(n) = 35*(a(n-1) - a(n-2)) + a(n-3);
a(n) = -1/16 + ((-24 + 17*sqrt(2))/2^(11/2))*(17 - 12*sqrt(2))^(n-1) + ((24 + 17*sqrt(2))/2^(11/2))*(17 + 12*sqrt(2))^(n-1). (End)
a(n+1) = (17*A029547(n) - A091761(n) - 1)/16. - R. J. Mathar, Nov 16 2007
a(n) = A001333^2 * A000129^2 = A000129(2*n)^2/4 = binomial(A001108,2). - Bill Gosper, Jul 28 2008
Closed form (as square = triangular): ( (sqrt(2)+1)^(2*n)/(4*sqrt(2)) - (1-sqrt(2))^(2*n)/(4*sqrt(2)) )^2 = (1/2) * ( ( (sqrt(2)+1)^n / 2 - (sqrt(2)-1)^n / 2 )^2 + 1 )*( (sqrt(2)+1)^n / 2 - (sqrt(2)-1)^n / 2 )^2. - Bill Gosper, Jul 25 2008
a(n) = (1/8)*(sinh(2*n*arcsinh(1)))^2. - Artur Jasinski, Feb 10 2010
a(n) = floor((17 + 12*sqrt(2))*a(n-1)) + 3 = floor(3*sqrt(2)/4 + (17 + 12*sqrt(2))*a(n-1) + 1). - Manuel Valdivia, Aug 15 2011
a(n) = (A011900(n) + A001652(n))^2; see the link about the generalized proof of square triangular numbers. - Kenneth J Ramsey, Oct 10 2011
a(2*n+1) = A002315(n)^2*(A002315(n)^2 + 1)/2. - Ivan N. Ianakiev, Oct 10 2012
a(2*n+1) = ((sqrt(t^2 + (t+1)^2))*(2*t+1))^2, where t = (A002315(n) - 1)/2. - Ivan N. Ianakiev, Nov 01 2012
a(2*n) = A001333(2*n)^2 * (A001333(2*n)^2 - 1)/2, and a(2*n+1) = A001333(2*n+1)^2 * (A001333(2*n+1)^2 + 1)/2. The latter is equivalent to the comment above from Ivan using A002315, which is a bisection of A001333. Using A001333 shows symmetry and helps show that a(n) are both "squares of triangular" and "triangular of squares". - Richard R. Forberg, Aug 30 2013
a(n) = (A001542(n)/2)^2.
From Peter Bala, Apr 03 2014: (Start)
a(n) = (T(n,17) - 1)/16, where T(n,x) denotes the Chebyshev polynomial of the first kind.
a(n) = U(n-1,3)^2, for n >= 1, where U(n,x) denotes the Chebyshev polynomial of the second kind.
a(n) = the bottom left entry of the 2 X 2 matrix T(n, M), where M is the 2 X 2 matrix [0, -17; 1, 18].
See the remarks in A100047 for the general connection between Chebyshev polynomials of the first kind and 4th-order linear divisibility sequences. (End)
a(n) = A096979(2*n-1) for n > 0. - Ivan N. Ianakiev, Jun 21 2014
a(n) = (6*sqrt(a(n-1)) - sqrt(a(n-2)))^2. - Arkadiusz Wesolowski, Apr 06 2015
From Daniel Poveda Parrilla, Jul 16 2016 and Sep 21 2016: (Start)
a(n) = A000290(A002965(2*n)*A002965(2*n + 1)) (after Hugh Darwen).
a(n) = A000217(2*(A000129(n))^2 - (A000129(n) mod 2)).
a(n) = A000129(n)^4 + Sum_{k=0..(A000129(n)^2 - (A000129(n) mod 2))} 2*k. This formula can be proved graphically by taking the corresponding triangle of a square triangular number and cutting both acute angles, one level at a time (sum of consecutive even numbers), resulting in a square of squares (4th powers).
a(n) = A002965(2*n)^4 + Sum_{k=A002965(2*n)^2..A002965(2*n)*A002965(2*n + 1) - 1} 2*k + 1. This formula takes an equivalent sum of consecutives, but odd numbers. (End)
E.g.f.: (exp((17-12*sqrt(2))*x) + exp((17+12*sqrt(2))*x) - 2*exp(x))/32. - Ilya Gutkovskiy, Jul 16 2016
EXAMPLE
a(2) = ((17 + 12*sqrt(2))^2 + (17 - 12*sqrt(2))^2 - 2)/32 = (289 + 24*sqrt(2) + 288 + 289 - 24*sqrt(2) + 288 - 2)/32 = (578 + 576 - 2)/32 = 1152/32 = 36 and 6^2 = 36 = 8*9/2 => a(2) is both the 6th square and the 8th triangular number.
MAPLE
a:=17+12*sqrt(2); b:=17-12*sqrt(2); A001110:=n -> expand((a^n + b^n - 2)/32); seq(A001110(n), n=0..20); # Jaap Spies, Dec 12 2004
A001110:=-(1+z)/((z-1)*(z**2-34*z+1)); # Simon Plouffe in his 1992 dissertation
MATHEMATICA
f[n_]:=n*(n+1)/2; lst={}; Do[If[IntegerQ[Sqrt[f[n]]], AppendTo[lst, f[n]]], {n, 0, 10!}]; lst (* Vladimir Joseph Stephan Orlovsky, Feb 12 2010 *)
Table[(1/8) Round[N[Sinh[2 n ArcSinh[1]]^2, 100]], {n, 0, 20}] (* Artur Jasinski, Feb 10 2010 *)
Transpose[NestList[Flatten[{Rest[#], 34Last[#]-First[#]+2}]&, {0, 1}, 20]][[1]] (* Harvey P. Dale, Mar 25 2011 *)
LinearRecurrence[{35, -35, 1}, {0, 1, 36}, 20] (* T. D. Noe, Mar 25 2011 *)
LinearRecurrence[{6, -1}, {0, 1}, 20]^2 (* Harvey P. Dale, Oct 22 2012 *)
(* Square = Triangular = Triangular = A001110 *)
ChebyshevU[#-1, 3]^2==Binomial[ChebyshevT[#/2, 3]^2, 2]==Binomial[(1+ChebyshevT[#, 3])/2, 2]=={1, 36, 1225, 41616, 1413721}[[#]]&@Range[5]
True (* Bill Gosper, Jul 20 2015 *)
L=0; r={}; Do[AppendTo[r, L]; L=1+17*L+6*Sqrt[L+8*L^2], {i, 1, 19}]; r (* Kebbaj Mohamed Reda, Aug 02 2023 *)
PROG
(PARI) a=vector(100); a[1]=1; a[2]=36; for(n=3, #a, a[n]=34*a[n-1]-a[n-2]+2); a \\ Charles R Greathouse IV, Jul 25 2011
(Haskell)
a001110 n = a001110_list !! n
a001110_list = 0 : 1 : (map (+ 2) $
zipWith (-) (map (* 34) (tail a001110_list)) a001110_list)
-- Reinhard Zumkeller, Oct 12 2011
(MIT/GNU Scheme, with memoizing definec-macro from Antti Karttunen's IntSeq-library)
(definec (A001110 n) (if (< n 2) n (+ 2 (- (* 34 (A001110 (- n 1))) (A001110 (- n 2))))))
;; The following two are for testing whether n is in this sequence:
(define (inA001110? n) (and (zero? (A068527 n)) (inA001109? (floor->exact (sqrt n)))))
(define (inA001109? n) (= (* 8 n n) (floor->exact (* (sqrt 8) n (ceiling->exact (* (sqrt 8) n))))))
;; Antti Karttunen, Dec 06 2013
(Magma) [n le 2 select n-1 else Floor((6*Sqrt(Self(n-1)) - Sqrt(Self(n-2)))^2): n in [1..20]]; // Vincenzo Librandi, Jul 22 2015
CROSSREFS
Other S_r type sequences are S_4=A000290, S_5=A004146, S_7=A054493, S_8=A001108, S_9=A049684, S_20=A049683, S_36=this sequence, S_49=A049682, S_144=A004191^2.
Cf. A001014; intersection of A000217 and A000290; A010052(a(n))*A010054(a(n)) = 1.
Cf. A005214, A054686, A232847 and also A233267 (reveals an interesting divisibility pattern for this sequence).
Cf. A240129 (triangular numbers that are squares of triangular numbers), A100047.
See A229131, A182334, A299921 for near-misses.
KEYWORD
nonn,easy,nice
STATUS
approved

Search completed in 0.089 seconds