Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Search: a004253 -id:a004253
     Sort: relevance | references | number | modified | created      Format: long | short | data
Primes in A004253.
+20
0
19, 2089, 10009, 229771, 1100899, 2779769539, 33629651653051, 161129341280179, 3698955932459041, 406851522918841459, 23583148518971728185859, 720404932310119551295422832411, 4593030255749728350335873388896105689, 6111807570415039356543996013033519421475691
OFFSET
1,1
COMMENTS
Related to the search of solutions of pair of congruences p^2 == -3 (mod q), q^2 == -3 (mod p).
Cosgrave and Dilcher list indices of these primes 2, 5, 6, 8, 9, 14, 20, 21, 23, 26, ... up to 25000 (assuming offset 0 in A004253), including probable primes.
LINKS
J. B. Cosgrave and K. Dilcher, Pairs of reciprocal quadratic congruences involving primes, Fib. Quart. 51 (2) (2013) 98, after Theorem 5.
FORMULA
A000040 INTERSECT A004253.
MATHEMATICA
Select[LinearRecurrence[{5, -1}, {1, 4}, 200], PrimeQ] (* Paolo Xausa, Mar 19 2024 *)
CROSSREFS
Cf. A004253.
KEYWORD
nonn
AUTHOR
R. J. Mathar, Jul 22 2022
EXTENSIONS
More terms from Jinyuan Wang, Jul 22 2022
STATUS
approved
a(n) = 5*a(n-1) - a(n-2) for n > 1, a(0) = 0, a(1) = 1.
(Formerly M3930)
+10
73
0, 1, 5, 24, 115, 551, 2640, 12649, 60605, 290376, 1391275, 6665999, 31938720, 153027601, 733199285, 3512968824, 16831644835, 80645255351, 386394631920, 1851327904249, 8870244889325, 42499896542376, 203629237822555, 975646292570399, 4674602225029440
OFFSET
0,3
COMMENTS
Nonnegative values of y satisfying x^2 - 21*y^2 = 4; values of x are in A003501. - Wolfdieter Lang, Nov 29 2002
a(n) is equal to the permanent of the (n-1) X (n-1) Hessenberg matrix with 5's along the main diagonal, i's along the superdiagonal and the subdiagonal (i is the imaginary unit), and 0's everywhere else. - John M. Campbell, Jun 09 2011
For n >= 1, a(n) equals the number of 01-avoiding words of length n-1 on alphabet {0,1,2,3,4}. - Milan Janjic, Jan 25 2015
Lim_{n->oo} a(n+1)/a(n) = (5 + sqrt(21))/2 = A107905. - Wolfdieter Lang, Nov 15 2023
From Klaus Purath, Jul 26 2024: (Start)
For any three consecutive terms (x, y, z), y^2 - xz = 1 always applies.
a(n) = (t(i+2n) - t(i))/(t(i+n+1) - t(i+n-1)) where (t) is any recurrence t(k) = 4t(k-1) + 4t(k-2) - t(k-3) or t(k) = 5t(k-1) - t(k-2) without regard to initial valus.
In particular, if the recurrence (t) of the form (4,4,-1) has the same three initial values as the current sequence, a(n) = t(n) applies.
a(n) = (t(k+1)*t(k+n) - t(k)*t(k+n+1))/(y^2 - xz) where (t) is any recurrence of the current family with signature (5,-1) and (x, y, z) are any three consecutive terms of (t), for integer k >= 0. (End)
REFERENCES
F. A. Haight, On a generalization of Pythagoras' theorem, pp. 73-77 of J. C. Butcher, editor, A Spectrum of Mathematics. Auckland University Press, 1971.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Indranil Ghosh, Table of n, a(n) for n = 0..1467 (terms 0..200 from T. D. Noe)
Marco Abrate, Stefano Barbero, Umberto Cerruti, and Nadir Murru, Polynomial sequences on quadratic curves, Integers, Vol. 15, 2015, #A38.
K. Andersen, L. Carbone, and D. Penta, Kac-Moody Fibonacci sequences, hyperbolic golden ratios, and real quadratic fields, Journal of Number Theory and Combinatorics, Vol 2, No. 3 pp 245-278, 2011. See Section 9.
Francesca Arici and Jens Kaad, Gysin sequences and SU(2)-symmetries of C*-algebras, arXiv:2012.11186 [math.OA], 2020.
D. Birmajer, J. B. Gil, and M. D. Weiner, On the Enumeration of Restricted Words over a Finite Alphabet, J. Int. Seq. 19 (2016) # 16.1.3 , Example 12
Chair, Noureddine Exact two-point resistance, and the simple random walk on the complete graph minus N edges, Ann. Phys. 327, No. 12, 3116-3129 (2012), B(7).
E. I. Emerson, Recurrent Sequences in the Equation DQ^2=R^2+N, Fib. Quart., 7 (1969), pp. 231-242.
Dale Gerdemann, Fractal images from (5,-1) recursion, YouTube Video, Nov 05 2014.
Dale Gerdemann, Fractal images from (5,-1) recursion: Selections in detail, YouTube Video, Nov 05 2014.
Frank A. Haight, On a generalization of Pythagoras' theorem, pp. 73-77 of J. C. Butcher, editor, A Spectrum of Mathematics. Auckland University Press, 1971. [Annotated scanned copy]
A. F. Horadam, Special properties of the sequence W_n(a,b; p,q), Fib. Quart., 5.5 (1967), 424-434. Case a=0,b=1; p=5, q=-1.
A. F. Horadam, Pell Identities, Fib. Quart., Vol. 9, No. 3, 1971, pp. 245-252.
M. Janjic, On Linear Recurrence Equations Arising from Compositions of Positive Integers, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.7.
Tanya Khovanova, Recursive Sequences
Wolfdieter Lang, On polynomials related to powers of the generating function of Catalan's numbers, Fib. Quart. 38,5 (2000) 408-419; Eq.(44), lhs, m=7.
Ioana-Claudia Lazăr, Lucas sequences in t-uniform simplicial complexes, arXiv:1904.06555 [math.GR], 2019.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
F. M. van Lamoen, Square wreaths around hexagons, Forum Geometricorum, 6 (2006) 311-325.
FORMULA
G.f.: x/(1-5*x+x^2).
a(n) = ((5+sqrt(21))/2)^n-((5-sqrt(21))/2)^n)/sqrt(21). - Barry E. Williams, Aug 29 2000
a(n) = S(2*n-1, sqrt(7))/sqrt(7) = S(n-1, 5); S(n, x)=U(n, x/2), Chebyshev polynomials of 2nd kind, A049310.
A003501(n) = sqrt(21*a(n)^2 + 4).
a(n) = Sum_{k=0..n-1} binomial(n+k, 2*k+1)*2^k. - Paul Barry, Nov 30 2004
[A004253(n), a(n)] = [1,3; 1,4]^n * [1,0]. - Gary W. Adamson, Mar 19 2008
a(n+1) = Sum_{k=0..n} Gegenbauer_C(n-k,k+1,2). - Paul Barry, Apr 21 2009
a(n+1) = Sum_{k=0..n} A101950(n,k)*4^k. - Philippe Deléham, Feb 10 2012
Product {n >= 1} (1 + 1/a(n)) = (1/3)*(3 + sqrt(21)). - Peter Bala, Dec 23 2012
Product {n >= 2} (1 - 1/a(n)) = (1/10)*(3 + sqrt(21)). - Peter Bala, Dec 23 2012
A054493(2*n - 1) = 7 * a(n)^2 for all n in Z. - Michael Somos, Jan 22 2017
a(n) = -a(-n) for all n in Z. - Michael Somos, Jan 22 2017
0 = -1 + a(n)*(+a(n) - 5*a(n+1)) + a(n+1)*(+a(n+1)) for all n in Z. - Michael Somos, Jan 22 2017
From Klaus Purath, Jul 26 2024: (Start)
a(n) = 4(a(n-1) + a(n-2)) - a(n-3).
a(n) = 6(a(n-1) - a(n-2)) + a(n-3).
In general, for all sequences of the form U(n) = P*U(n-1) - U(n-2) the following applies:
U(n) = (P-1)*U(n-1) + (P-1)*U(n-2) - U(n-3).
U(n) = (P+1)*U(n-1) - (P+1)*U(n-2) + U(n-3). (End)
EXAMPLE
G.f. = x + 5*x^2 + 24*x^3 + 115*x^4 + 551*x^5 + 2640*x^6 + 12649*x^7 + ...
MAPLE
A004254:=1/(1-5*z+z**2); # Simon Plouffe in his 1992 dissertation
MATHEMATICA
a[n_]:=(MatrixPower[{{1, 3}, {1, 4}}, n].{{1}, {1}})[[2, 1]]; Table[a[n], {n, 0, 40}] (* Vladimir Joseph Stephan Orlovsky, Feb 19 2010 *)
a[ n_] := ChebyshevU[2 n - 1, Sqrt[7]/2] / Sqrt[7]; (* Michael Somos, Jan 22 2017 *)
PROG
(PARI) {a(n) = subst(4*poltchebi(n+1) - 10*poltchebi(n), x, 5/2) / 21}; /* Michael Somos, Dec 04 2002 */
(PARI) {a(n) = imag((5 + quadgen(84))^n) / 2^(n-1)}; /* Michael Somos, Dec 04 2002 */
(PARI) {a(n) = polchebyshev(n - 1, 2, 5/2)}; /* Michael Somos, Jan 22 2017 */
(PARI) {a(n) = simplify( polchebyshev( 2*n - 1, 2, quadgen(28)/2) / quadgen(28))}; /* Michael Somos, Jan 22 2017 */
(Sage) [lucas_number1(n, 5, 1) for n in range(27)] # Zerinvary Lajos, Jun 25 2008
(Magma) [ n eq 1 select 0 else n eq 2 select 1 else 5*Self(n-1)-Self(n-2): n in [1..30] ]; // Vincenzo Librandi, Aug 19 2011
CROSSREFS
Partial sums of A004253.
Cf. A000027, A001906, A001353, A003501, A030221. a(n) = sqrt((A003501(n)^2 - 4)/21).
First differences of a(n) are in A004253, partial sums in A089817.
Cf. A004253.
INVERT transformation yields A001109. - R. J. Mathar, Sep 11 2008
KEYWORD
easy,nonn,easy
STATUS
approved
Triangle read by rows, 0 <= k <= n: T(n,k) = binomial(n-[(k+1)/2],[k/2])*(-1)^[(k+1)/2].
+10
58
1, 1, -1, 1, -1, -1, 1, -1, -2, 1, 1, -1, -3, 2, 1, 1, -1, -4, 3, 3, -1, 1, -1, -5, 4, 6, -3, -1, 1, -1, -6, 5, 10, -6, -4, 1, 1, -1, -7, 6, 15, -10, -10, 4, 1, 1, -1, -8, 7, 21, -15, -20, 10, 5, -1, 1, -1, -9, 8, 28, -21, -35, 20, 15, -5, -1, 1, -1, -10, 9, 36, -28, -56, 35, 35, -15, -6, 1, 1, -1, -11, 10, 45, -36, -84, 56, 70
OFFSET
0,9
COMMENTS
Matrix inverse of A124645.
Let L(n,x) = Sum_{k=0..n} T(n,k)*x^(n-k) and Pi=3.14...:
L(n,x) = Product_{k=1..n} (x - 2*cos((2*k-1)*Pi/(2*n+1)));
Sum_{k=0..n} T(n,k) = L(n,1) = A010892(n+1);
Sum_{k=0..n} abs(T(n,k)) = A000045(n+2);
abs(T(n,k)) = A065941(n,k), T(n,k) = A065941(n,k)*A087960(k);
T(2*n,k) + T(2*n+1,k+1) = 0 for 0 <= k <= 2*n;
T(n,0) = A000012(n) = 1; T(n,1) = -1 for n > 0;
T(n,2) = -(n-1) for n > 1; T(n,3) = A000027(n)=n for n > 2;
T(n,4) = A000217(n-3) for n > 3; T(n,5) = -A000217(n-4) for n > 4;
T(n,6) = -A000292(n-5) for n > 5; T(n,7) = A000292(n-6) for n > 6;
T(n,n-3) = A058187(n-3)*(-1)^floor(n/2) for n > 2;
T(n,n-2) = A008805(n-2)*(-1)^floor((n+1)/2) for n > 1;
T(n,n-1) = A008619(n-1)*(-1)^floor(n/2) for n > 0;
T(n,n) = L(n,0) = (-1)^floor((n+1)/2);
L(n,1) = A010892(n+1); L(n,-1) = A061347(n+2);
L(n,2) = 1; L(n,-2) = A005408(n)*(-1)^n;
L(n,3) = A001519(n); L(n,-3) = A002878(n)*(-1)^n;
L(n,4) = A001835(n+1); L(n,-4) = A001834(n)*(-1)^n;
L(n,5) = A004253(n); L(n,-5) = A030221(n)*(-1)^n;
L(n,6) = A001653(n); L(n,-6) = A002315(n)*(-1)^n;
L(n,7) = A049685(n); L(n,-7) = A033890(n)*(-1)^n;
L(n,8) = A070997(n); L(n,-8) = A057080(n)*(-1)^n;
L(n,9) = A070998(n); L(n,-9) = A057081(n)*(-1)^n;
L(n,10) = A072256(n+1); L(n,-10) = A054320(n)*(-1)^n;
L(n,11) = A078922(n+1); L(n,-11) = A097783(n)*(-1)^n;
L(n,12) = A077417(n); L(n,-12) = A077416(n)*(-1)^n;
L(n,13) = A085260(n);
L(n,14) = A001570(n); L(n,-14) = A028230(n)*(-1)^n;
L(n,n) = A108366(n); L(n,-n) = A108367(n).
Row n of the matrix inverse (A124645) has g.f.: x^floor(n/2)*(1-x)^(n-floor(n/2)). - Paul D. Hanna, Jun 12 2005
From L. Edson Jeffery, Mar 12 2011: (Start)
Conjecture: Let N=2*n+1, with n > 2. Then T(n,k) (0 <= k <= n) gives the k-th coefficient in the characteristic function p_N(x)=0, of degree n in x, for the n X n tridiagonal unit-primitive matrix G_N (see [Jeffery]) of the form
G_N=A_{N,1}=
(0 1 0 ... 0)
(1 0 1 0 ... 0)
(0 1 0 1 0 ... 0)
...
(0 ... 0 1 0 1)
(0 ... 0 1 1),
with solutions phi_j = 2*cos((2*j-1)*Pi/N), j=1,2,...,n. For example, for n=3,
G_7=A_{7,1}=
(0 1 0)
(1 0 1)
(0 1 1).
We have {T(3,k)}=(1,-1,-2,1), while the characteristic function of G_7 is p(x) = x^3-x^2-2*x+1 = 0, with solutions phi_j = 2*cos((2*j-1)*Pi/7), j=1,2,3. (End)
The triangle sums, see A180662 for their definitions, link A108299 with several sequences, see the crossrefs. - Johannes W. Meijer, Aug 08 2011
The roots to the polynomials are chaotic using iterates of the operation (x^2 - 2), with cycle lengths L and initial seeds returning to the same term or (-1)* the seed. Periodic cycle lengths L are shown in A003558 such that for the polynomial represented by row r, the cycle length L is A003558(r-1). The matrices corresponding to the rows as characteristic polynomials are likewise chaotic [cf. Kappraff et al., 2005] with the same cycle lengths but substituting 2*I for the "2" in (x^2 - 2), where I = the Identity matrix. For example, the roots to x^3 - x^2 - 2x + 1 = 0 are 1.801937..., -1.246979..., and 0.445041... With 1.801937... as the initial seed and using (x^2 - 2), we obtain the 3-period trajectory of 8.801937... -> 1.246979... -> -0.445041... (returning to -1.801937...). We note that A003558(2) = 3. The corresponding matrix M is: [0,1,0; 1,0,1; 0,1,1,]. Using seed M with (x^2 - 2*I), we obtain the 3-period with the cycle completed at (-1)*M. - Gary W. Adamson, Feb 07 2012
REFERENCES
Friedrich L. Bauer, 'De Moivre und Lagrange: Cosinus eines rationalen Vielfachen von Pi', Informatik Spektrum 28 (Springer, 2005).
Jay Kappraff, S. Jablan, G. Adamson, & R. Sazdonovich: "Golden Fields, Generalized Fibonacci Sequences, & Chaotic Matrices"; FORMA, Vol 19, No 4, (2005).
LINKS
Henry W. Gould, A Variant of Pascal's Triangle, Corrections, The Fibonacci Quarterly, Vol. 3, Nr. 4, Dec. 1965, p. 257-271.
L. Edson Jeffery, Unit-primitive matrices.
Ju, Hyeong-Kwan On the sequence generated by a certain type of matrices. Honam Math. J. 39, No. 4, 665-675 (2017).
Michelle Rudolph-Lilith, On the Product Representation of Number Sequences, with Application to the Fibonacci Family, arXiv preprint arXiv:1508.07894 [math.NT], 2015.
Frank Ruskey and Carla Savage, Gray codes for set partitions and restricted growth tails, Australasian Journal of Combinatorics, Volume 10(1994), pp. 85-96. See Table 1 p. 95.
FORMULA
T(n,k) = binomial(n-floor((k+1)/2),floor(k/2))*(-1)^floor((k+1)/2).
T(n+1, k) = if sign(T(n, k-1))=sign(T(n, k)) then T(n, k-1)+T(n, k) else -T(n, k-1) for 0 < k < n, T(n, 0) = 1, T(n, n) = (-1)^floor((n+1)/2).
G.f.: A(x, y) = (1 - x*y)/(1 - x + x^2*y^2). - Paul D. Hanna, Jun 12 2005
The generating polynomial (in z) of row n >= 0 is (u^(2*n+1) + v^(2*n+1))/(u + v), where u and v are defined by u^2 + v^2 = 1 and u*v = z. - Emeric Deutsch, Jun 16 2011
From Johannes W. Meijer, Aug 08 2011: (Start)
abs(T(n,k)) = A065941(n,k) = abs(A187660(n,n-k));
T(n,n-k) = A130777(n,k); abs(T(n,n-k)) = A046854(n,k) = abs(A066170(n,k)). (End)
EXAMPLE
Triangle begins:
1;
1, -1;
1, -1, -1;
1, -1, -2, 1;
1, -1, -3, 2, 1;
1, -1, -4, 3, 3, -1;
1, -1, -5, 4, 6, -3, -1;
1, -1, -6, 5, 10, -6, -4, 1;
1, -1, -7, 6, 15, -10, -10, 4, 1;
1, -1, -8, 7, 21, -15, -20, 10, 5, -1;
1, -1, -9, 8, 28, -21, -35, 20, 15, -5, -1;
1, -1, -10, 9, 36, -28, -56, 35, 35, -15, -6, 1;
...
MAPLE
A108299 := proc(n, k): binomial(n-floor((k+1)/2), floor(k/2))*(-1)^floor((k+1)/2) end: seq(seq(A108299 (n, k), k=0..n), n=0..11); # Johannes W. Meijer, Aug 08 2011
MATHEMATICA
t[n_, k_?EvenQ] := I^k*Binomial[n-k/2, k/2]; t[n_, k_?OddQ] := -I^(k-1)*Binomial[n+(1-k)/2-1, (k-1)/2]; Table[t[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 16 2013 *)
PROG
(PARI) {T(n, k)=polcoeff(polcoeff((1-x*y)/(1-x+x^2*y^2+x^2*O(x^n)), n, x)+y*O(y^k), k, y)} (Hanna)
(Haskell)
a108299 n k = a108299_tabl !! n !! k
a108299_row n = a108299_tabl !! n
a108299_tabl = [1] : iterate (\row ->
zipWith (+) (zipWith (*) ([0] ++ row) a033999_list)
(zipWith (*) (row ++ [0]) a059841_list)) [1, -1]
-- Reinhard Zumkeller, May 06 2012
CROSSREFS
Cf. A049310, A039961, A124645 (matrix inverse).
Triangle sums (see the comments): A193884 (Kn11), A154955 (Kn21), A087960 (Kn22), A000007 (Kn3), A010892 (Fi1), A134668 (Fi2), A078031 (Ca2), A193669 (Gi1), A001519 (Gi3), A193885 (Ze1), A050935 (Ze3). - Johannes W. Meijer, Aug 08 2011
Cf. A003558.
KEYWORD
sign,tabl
AUTHOR
Reinhard Zumkeller, Jun 01 2005
EXTENSIONS
Corrected and edited by Philippe Deléham, Oct 20 2008
STATUS
approved
Chebyshev even-indexed U-polynomials evaluated at sqrt(7)/2.
+10
33
1, 6, 29, 139, 666, 3191, 15289, 73254, 350981, 1681651, 8057274, 38604719, 184966321, 886226886, 4246168109, 20344613659, 97476900186, 467039887271, 2237722536169, 10721572793574, 51370141431701, 246129134364931, 1179275530392954, 5650248517599839
OFFSET
0,2
COMMENTS
a(n) = L(n,-5)*(-1)^n, where L is defined as in A108299; see also A004253 for L(n,+5). - Reinhard Zumkeller, Jun 01 2005
General recurrence is a(n) = (a(1)-1)*a(n-1) - a(n-2), a(1) >= 4; lim_{n->oo} a(n) = x*(k*x+1)^n, k =(a(1)-3), x=(1+sqrt((a(1)+1)/(a(1)-3)))/2. Examples in OEIS: a(1)=4 gives A002878. a(1)=5 gives A001834. a(1)=6 gives the present sequence. a(1)=7 gives A002315. a(1)=8 gives A033890. a(1)=9 gives A057080. a(1)=10 gives A057081. - Ctibor O. Zizka, Sep 02 2008
The primes in this sequence are 29, 139, 3191, 15289, 350981, 1681651, ... - Ctibor O. Zizka, Sep 02 2008
Inverse binomial transform of A030240. - Philippe Deléham, Nov 19 2009
For positive n, a(n) equals the permanent of the (2n)X(2n) matrix with sqrt(7)'s along the main diagonal, and i's along the superdiagonal and the subdiagonal (i is the imaginary unit). - John M. Campbell, Jul 08 2011
The aerated sequence (b(n))n>=1 = [1, 0, 6, 0, 29, 0, 139, 0, ...] is a fourth-order linear divisibility sequence; that is, if n | m then b(n) | b(m). It is the case P1 = 0, P2 = -3, Q = -1 of the 3-parameter family of divisibility sequences found by Williams and Guy. See A100047 for a connection with Chebyshev polynomials. - Peter Bala, Mar 22 2015
From Wolfdieter Lang, Oct 26 2020: (Start)
((-1)^n)*a(n) = X(n) = ((-1)^n)*(S(n, 5) + S(n-1, 5)) and Y(n) = X(n-1) gives all integer solutions (modulo sign flip between X and Y) of X^2 + Y^2 + 5*X*Y = +7, for n = -oo..+oo, with Chebyshev S polynomials (see A049310), with S(-1, x) = 0, and S(-n, x) = - S(n-2, x), for n >= 2.
This binary indefinite quadratic form of discriminant 21, representing 7, has only this family of proper solutions (modulo sign flip), and no improper ones.
This comment is inspired by a paper by Robert K. Moniot (private communication). See his Oct 04 2020 comment in A027941 related to the case of x^2 + y^2 - 3*x*y = -1 (special Markov solutions). (End)
LINKS
Marco Abrate, Stefano Barbero, Umberto Cerruti, and Nadir Murru, Polynomial sequences on quadratic curves, Integers, Vol. 15, 2015, #A38.
K. Andersen, L. Carbone, and D. Penta, Kac-Moody Fibonacci sequences, hyperbolic golden ratios, and real quadratic fields, Journal of Number Theory and Combinatorics, Vol 2, No. 3 pp 245-278, 2011. See Section 9.
K. Dilcher and K. B. Stolarsky, A Pascal-type triangle characterizing twin primes, Amer. Math. Monthly, 112 (2005), 673-681. (see page 678)
Alex Fink, Richard K. Guy, and Mark Krusemeyer, Partitions with parts occurring at most thrice, Contributions to Discrete Mathematics, Vol 3, No 2 (2008), pp. 76-114. See Section 13.
Taras Goy and Mark Shattuck, Determinants of Toeplitz-Hessenberg Matrices with Generalized Leonardo Number Entries, Ann. Math. Silesianae (2023). See p. 18.
Tanya Khovanova, Recursive Sequences.
Wolfdieter Lang, On polynomials related to powers of the generating function of Catalan's numbers, Fib. Quart. 38 (2000) 408-419. Eq.(44), rhs, m=6.
Ioana-Claudia Lazăr, Lucas sequences in t-uniform simplicial complexes, arXiv:1904.06555 [math.GR], 2019.
Donatella Merlini and Renzo Sprugnoli, Arithmetic into geometric progressions through Riordan arrays, Discrete Mathematics 340.2 (2017): 160-174.
H. C. Williams and R. K. Guy, Some fourth-order linear divisibility sequences, Intl. J. Number Theory 7 (5) (2011) 1255-1277.
H. C. Williams and R. K. Guy, Some Monoapparitic Fourth Order Linear Divisibility Sequences, Integers, Volume 12A (2012) The John Selfridge Memorial Volume.
FORMULA
a(n) = 5*a(n-1) - a(n-2), a(-1)=-1, a(0)=1.
a(n) = U(2*n, sqrt(7)/2).
G.f.: (1+x)/(x^2-5*x+1).
a(n) = A004254(n) + A004254(n+1).
a(n) ~ (1/2 + (1/6)*sqrt(21))*((1/2)*(5 + sqrt(21)))^n. - Joe Keane (jgk(AT)jgk.org), May 16 2002
Let q(n, x) = Sum_{i=0..n} x^(n-i)*binomial(2*n-i, i); then a(n) = (-1)^n*q(n, -7). - Benoit Cloitre, Nov 10 2002
A054493(2*n) = a(n)^2 for all n in Z. - Michael Somos, Jan 22 2017
a(n) = -a(-1-n) for all n in Z. - Michael Somos, Jan 22 2017
0 = -7 + a(n)*(+a(n) - 5*a(n+1)) + a(n+1)*(+a(n+1)) for all n in Z. - Michael Somos, Jan 22 2017
a(n) = S(n, 5) + S(n-1, 5) = S(2*n, sqrt(7) (see above in terms of U), for n >= 0 with S(-1, 5) = 0, where the coefficients of the Chebyshev S polynomials are given in A049310. - Wolfdieter Lang, Oct 26 2020
EXAMPLE
G.f. = 1 + 6*x + 29*x^2 + 139*x^3 + 666*x^4 + 3191*x^5 + 15289*x^6 + ...
MAPLE
A030221 := proc(n)
option remember;
if n <= 1 then
op(n+1, [1, 6]);
else
5*procname(n-1)-procname(n-2) ;
end if;
end proc: # R. J. Mathar, Apr 30 2017
MATHEMATICA
t[n_, k_?EvenQ] := I^k*Binomial[n-k/2, k/2]; t[n_, k_?OddQ] := -I^(k-1)*Binomial[n+(1-k)/2-1, (k-1)/2]; l[n_, x_] := Sum[t[n, k]*x^(n-k), {k, 0, n}]; a[n_] := (-1)^n*l[n, -5]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jul 05 2013, after Reinhard Zumkeller *)
a[ n_] := ChebyshevU[2 n, Sqrt[7]/2]; (* Michael Somos, Jan 22 2017 *)
PROG
(Sage) [(lucas_number2(n, 5, 1)-lucas_number2(n-1, 5, 1))/3 for n in range(1, 22)] # Zerinvary Lajos, Nov 10 2009
(Magma) I:=[1, 6]; [n le 2 select I[n] else 5*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Mar 22 2015
(PARI) {a(n) = simplify(polchebyshev(2*n, 2, quadgen(28)/2))}; /* Michael Somos, Jan 22 2017 */
CROSSREFS
Cf. A004253, A004254, A100047, A054493 (partial sums), A049310, A003501 (first differences), A299109 (subsequence of primes).
KEYWORD
nonn,easy
STATUS
approved
Array T(k,n) read by antidiagonals. G.f.: x(1-x)/(1-kx+x^2), k>1.
+10
29
1, 1, 1, 1, 2, 1, 1, 3, 5, 1, 1, 4, 11, 13, 1, 1, 5, 19, 41, 34, 1, 1, 6, 29, 91, 153, 89, 1, 1, 7, 41, 169, 436, 571, 233, 1, 1, 8, 55, 281, 985, 2089, 2131, 610, 1, 1, 9, 71, 433, 1926, 5741, 10009, 7953, 1597, 1, 1, 10, 89, 631, 3409, 13201, 33461, 47956, 29681
OFFSET
1,5
COMMENTS
Also, values of polynomials with coefficients in A098493 (see Fink et al.). See A098495 for negative k.
Number of dimer tilings of the graph S_{k-1} X P_{2n-2}.
LINKS
Alex Fink, Richard K. Guy, and Mark Krusemeyer, Partitions with parts occurring at most thrice, Contributions to Discrete Mathematics, Vol 3, No 2 (2008), pp. 76-114.
Elizabeth Wilmer, A note on Stephan's conjecture 87 [cached copy]
FORMULA
Recurrence: T(k, 1) = 1, T(k, 2) = k-1, T(k, n) = kT(k, n-1) - T(k, n-2).
For n>3, T(k, n) = [k(k-2) + T(k, n-1)T(k, n-2)] / T(k, n-3).
T(k, n+1) = S(n, k) - S(n-1, k) = U(n, k/2) - U(n-1, k/2), with S, U = Chebyshev polynomials of second kind.
T(k+2, n+1) = Sum[i=0..n, k^(n-i) * C(2n-i, i)] (from comments by Benoit Cloitre).
EXAMPLE
1,1,1,1,1,1,1,1,1,1,1,1,1,1, ...
1,2,5,13,34,89,233,610,1597, ...
1,3,11,41,153,571,2131,7953, ...
1,4,19,91,436,2089,10009,47956, ...
1,5,29,169,985,5741,33461,195025, ...
1,6,41,281,1926,13201,90481,620166, ...
MATHEMATICA
max = 14; row[k_] := Rest[ CoefficientList[ Series[ x*(1-x)/(1-k*x+x^2), {x, 0, max}], x]]; t = Table[ row[k], {k, 2, max+1}]; Flatten[ Table[ t[[k-n+1, n]], {k, 1, max}, {n, 1, k}]] (* Jean-François Alcover, Dec 27 2011 *)
PROG
(PARI) T(k, n)=polcoeff(x*(1-x)/(1-k*x+x*x), n)
CROSSREFS
Rows are first differences of rows in array A073134.
Rows 2-14 are A000012, A001519, A079935/A001835, A004253, A001653, A049685, A070997, A070998, A072256, A078922, A077417, A085260, A001570. Other rows: A007805 (k=18), A075839 (k=20), A077420 (k=34), A078988 (k=66).
Columns include A028387. Diagonals include A094955, A094956. Antidiagonal sums are A094957.
KEYWORD
nonn,tabl
AUTHOR
Ralf Stephan, May 31 2004
STATUS
approved
Expansion of (1 - x)/(1 - 36*x + x^2).
+10
29
1, 35, 1259, 45289, 1629145, 58603931, 2108112371, 75833441425, 2727895778929, 98128414600019, 3529895029821755, 126978092658983161, 4567681440693572041, 164309553772309610315, 5910576254362452399299, 212616435603275976764449
OFFSET
0,2
COMMENTS
First bisection of A041611.
FORMULA
G.f.: (1 - x)/(1 - 36*x + x^2).
a(n) = a(-n-1) = 36*a(n-1) - a(n-2).
a(n) = ((19-sqrt(323))/38)*(1+(18+sqrt(323))^(2*n+1))/(18+sqrt(323))^n.
a(n+1) - a(n) = 34*A144128(n+1).
323*a(n+1)^2 - ((a(n+2)-a(n))/2)^2 = 34.
Sum_{n>0} 1/(a(n) - 1/a(n)) = 1/34.
See also Tanya Khovanova in Links field:
a(n) = 35*a(n-1) + 34*Sum_{i=0..n-2} a(i).
a(n+2)*a(n) - a(n+1)^2 = 36-2 = 34 = 34*1,
a(n+3)*a(n) - a(n+1)*a(n+2) = 36*(36-2) = 1224 = 34*36.
Generalizing:
a(n+4)*a(n) - a(n+1)*a(n+3) = 44030 = 34*1295,
a(n+5)*a(n) - a(n+1)*a(n+4) = 1583856 = 34*46584,
a(n+6)*a(n) - a(n+1)*a(n+5) = 56974786 = 34*1675729, etc.,
where 1, 36, 1295, 46584, 1675729, ... is the sequence A144128, which is the second bisection of A041611.
a(n)^2 - 36*a(n)*a(n+1) + a(n+1)^2 + 34 = 0 (see comments by Colin Barker in similar sequences).
MATHEMATICA
CoefficientList[Series[(1 - x)/(1 - 36 x + x^2), {x, 0, 20}], x] (* or *) LinearRecurrence[{36, -1}, {1, 35}, 20]
PROG
(Magma) [n le 2 select 35^(n-1) else 36*Self(n-1)-Self(n-2): n in [1..20]];
(Magma) R<x>:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1 - x)/(1 - 36*x + x^2))); // Marius A. Burtea, Jan 14 2020
(Sage)
m = 20; L.<x> = PowerSeriesRing(ZZ, m); f = (1-x)/(1-36*x+x^2)
print(f.coefficients())
(PARI) a(n)=([0, 1; -1, 36]^n*[1; 35])[1, 1] \\ Charles R Greathouse IV, May 10 2016
CROSSREFS
Cf. similar sequences with g.f. (1-x)/(1-k*x+x^2): A122367 (k=3), A079935 (k=4), A004253 (k=5), A001653 (k=6), A049685 (k=7), A070997 (k=8), A070998 (k=9), A138288 (k=10), A078922 (k=11), A077417 (k=12), A085260 (k=13), A001570 (k=14), A160682 (k=15), A157456 (k=16), A161595 (k=17). From 18 to 38, even k only, except k=27 and k=31: A007805 (k=18), A075839 (k=20), A157014 (k=22), A159664 (k=24), A153111 (k=26), A097835 (k=27), A159668 (k=28), A157877 (k=30), A111216 (k=31), A159674 (k=32), A077420 (k=34), this sequence (k=36), A097315 (k=38).
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Feb 25 2014
STATUS
approved
a(n) = 5*a(n-1) - a(n-2), with a(0) = 2, a(1) = 5.
(Formerly M1540)
+10
22
2, 5, 23, 110, 527, 2525, 12098, 57965, 277727, 1330670, 6375623, 30547445, 146361602, 701260565, 3359941223, 16098445550, 77132286527, 369562987085, 1770682648898, 8483850257405, 40648568638127, 194758992933230, 933146396028023, 4470972987206885
OFFSET
0,1
COMMENTS
Positive values of x satisfying x^2 - 21*y^2 = 4; values of y are in A004254. - Wolfdieter Lang, Nov 29 2002
Except for the first term, positive values of x (or y) satisfying x^2 - 5xy + y^2 + 21 = 0. - Colin Barker, Feb 08 2014
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Noureddine Chair, Exact two-point resistance, and the simple random walk on the complete graph minus N edges, Ann. Phys. 327, No. 12, 3116-3129 (2012), P(7).
Tanya Khovanova, Recursive Sequences
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
Jeffrey Shallit, An interesting continued fraction, Math. Mag., 48 (1975), 207-211.
Jeffrey Shallit, An interesting continued fraction, Math. Mag., 48 (1975), 207-211. [Annotated scanned copy]
FORMULA
a(n) = 5*S(n-1, 5) - 2*S(n-2, 5) = S(n, 5) - S(n-2, 5) = 2*T(n, 5/2), with S(n, x)=U(n, x/2), S(-1, x)=0, S(-2, x)=-1. U(n, x), resp. T(n, x), are Chebyshev's polynomials of the second, resp. first, kind. S(n-1, 5) = A004254(n), n>=0.
G.f.: (2-5*x)/(1-5*x+x^2). - Simon Plouffe in his 1992 dissertation.
a(n) ~ (1/2*(5 + sqrt(21)))^n. - Joe Keane (jgk(AT)jgk.org), May 16 2002
a(n) = ap^n + am^n, with ap=(5+sqrt(21))/2 and am=(5-sqrt(21))/2.
a(n) = sqrt(4 + 21*A004254(n)^2).
From Peter Bala, Jan 06 2013: (Start)
Let F(x) = Product_{n=0..inf} (1 + x^(4*n+1))/(1 + x^(4*n+3)). Let alpha = 1/2*(5 - sqrt(21)). This sequence gives the simple continued fraction expansion of 1 + F(alpha) = 2.19827 65373 95327 17782 ... = 2 + 1/(5 + 1/(23 + 1/(110 + ...))).
Also F(-alpha) = 0.79824 49142 28050 93561 ... has the continued fraction representation 1 - 1/(5 - 1/(23 - 1/(110 - ...))) and the simple continued fraction expansion 1/(1 + 1/((5-2) + 1/(1 + 1/((23-2) + 1/(1 + 1/((110-2) + 1/(1 + ...))))))).
F(alpha)*F(-alpha) has the simple continued fraction expansion 1/(1 + 1/((5^2-4) + 1/(1 + 1/((23^2-4) + 1/(1 + 1/((110^2-4) + 1/(1 + ...))))))).
(End)
a(n) = (A217787(k+3n) + A217787(k-3n))/A217787(k) for k>=3n. - Bruno Berselli, Mar 25 2013
EXAMPLE
G.f. = 2 + 5*x + 23*x^2 + 110*x^3 + 527*x^4 + 2525*x^5 + ... - Michael Somos, Oct 25 2022
MAPLE
seq( simplify(2*ChebyshevT(n, 5/2)), n=0..30); # G. C. Greubel, Jan 16 2020
MATHEMATICA
a[0]=2; a[1]=5; a[n_]:= 5a[n-1] -a[n-2]; Table[a[n], {n, 0, 30}] (* Robert G. Wilson v, Jan 30 2004 *)
LinearRecurrence[{5, -1}, {2, 5}, 30] (* Harvey P. Dale, May 12 2019 *)
2*ChebyshevT[Range[0, 30], 5/2] (* G. C. Greubel, Jan 16 2020 *)
a[ n_] := LucasL[n, 5*I]/I^n; (* Michael Somos, Oct 25 2022 *)
PROG
(PARI) {a(n) = subst(poltchebi(n), x, 5/2)*2};
(PARI) {a(n) = polchebyshev(n, 1, 5/2)*2 }; /* Michael Somos, Oct 25 2022 */
(Sage) [lucas_number2(n, 5, 1) for n in range(37)] # Zerinvary Lajos, Jun 25 2008
(Magma) I:=[2, 5]; [n le 2 select I[n] else 5*Self(n-1) -Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 16 2020
(Magma) R<x>:=PowerSeriesRing(Integers(), 25); Coefficients(R!((2-5*x)/(1-5*x+x^2))); // Marius A. Burtea, Jan 16 2020
(GAP) a:=[2, 5];; for n in [4..30] do a[n]:=5*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Jan 16 2020
CROSSREFS
KEYWORD
nonn,easy
EXTENSIONS
Chebyshev comments from Wolfdieter Lang, Oct 31 2002
STATUS
approved
Rectangular array: A(n,k) = Sum_{j=0..k} (-1)^floor(j/2)*binomial(k-floor((j+1)/2), floor(j/2))*(-n)^(k-j), n >= 1, k >= 0, read by antidiagonals.
+10
15
1, 1, 0, 1, -1, -1, 1, -2, 1, 1, 1, -3, 5, -1, 0, 1, -4, 11, -13, 1, -1, 1, -5, 19, -41, 34, -1, 1, 1, -6, 29, -91, 153, -89, 1, 0, 1, -7, 41, -169, 436, -571, 233, -1, -1, 1, -8, 55, -281, 985, -2089, 2131, -610, 1, 1, 1, -9, 71, -433, 1926, -5741, 10009, -7953, 1597, -1, 0
OFFSET
1,8
COMMENTS
This array is used to compute A269252: A269252(n) = least k such that |A(n,k)| is a prime, or -1 if no such k exists.
For detailed theory, see [Hone].
The array can be extended to k<0 with A(n, k) = -A(n, -k-1) for all k in Z. - Michael Somos, Jun 19 2023
LINKS
Andrew N. W. Hone, et al., On a family of sequences related to Chebyshev polynomials, arXiv:1802.01793 [math.NT], 2018.
FORMULA
G.f. for row n: (1 + x)/(1 + n*x + x^2), n >= 1.
A(n, k) = B(-n, k) where B = A294099. - Michael Somos, Jun 19 2023
EXAMPLE
Array begins:
1 0 -1 1 0 -1 1 0 -1 1
1 -1 1 -1 1 -1 1 -1 1 -1
1 -2 5 -13 34 -89 233 -610 1597 -4181
1 -3 11 -41 153 -571 2131 -7953 29681 -110771
1 -4 19 -91 436 -2089 10009 -47956 229771 -1100899
1 -5 29 -169 985 -5741 33461 -195025 1136689 -6625109
1 -6 41 -281 1926 -13201 90481 -620166 4250681 -29134601
1 -7 55 -433 3409 -26839 211303 -1663585 13097377 -103115431
1 -8 71 -631 5608 -49841 442961 -3936808 34988311 -310957991
1 -9 89 -881 8721 -86329 854569 -8459361 83739041 -828931049
MATHEMATICA
(* Array: *)
Grid[Table[LinearRecurrence[{-n, -1}, {1, 1 - n}, 10], {n, 10}]]
(*Array antidiagonals flattened (gives this sequence):*)
A299045[n_, k_] := Sum[(-1)^(Floor[j/2]) Binomial[k - Floor[(j + 1)/2], Floor[j/2]] (-n)^(k - j), {j, 0, k}]; Flatten[Table[A299045[n - k, k], {n, 11}, {k, 0, n - 1}]]
PROG
(PARI) {A(n, k) = sum(j=0, k, (-1)^(j\2)*binomial(k-(j+1)\2, j\2)*(-n)^(k-j))}; /* Michael Somos, Jun 19 2023 */
CROSSREFS
Cf. A094954 (unsigned version of this array, but missing the first row).
KEYWORD
sign,tabl
AUTHOR
STATUS
approved
The sequence solves the following problem: find all the pairs (i,j) such that i divides 1+j+j^2 and j divides 1+i+i^2. In fact, the pairs (a(n),a(n+1)), n>0, are all the solutions.
+10
14
1, 1, 3, 13, 61, 291, 1393, 6673, 31971, 153181, 733933, 3516483, 16848481, 80725921, 386781123, 1853179693, 8879117341, 42542407011, 203832917713, 976622181553, 4679277990051, 22419767768701, 107419560853453, 514678036498563, 2465970621639361, 11815175071698241, 56609904736851843, 271234348612560973
OFFSET
1,3
COMMENTS
Also, integers m such that 21*(3*m-1)^2 - 48 is a square. - Max Alekseyev, May 23 2022
a(n) is prime exactly for n = 3, 4, 5, 8, 16, 20, 22, 23, 58, 302, 386, 449, 479, 880 up to 1000. - Tomohiro Yamada, Dec 23 2018
Similarly, positive integers m,k with m|(1+k+^2) and k|(1-m+m^2) are consecutive terms of A061646, where m has an even index. - Max Alekseyev, May 23 2022
LINKS
Esther Banaian and Archan Sen, A Generalization of Markov Numbers, arXiv:2210.07366 [math.CO], 2022. See Table 1 p. 12.
T. Cai, Z. Shen and L. Jia, A congruence involving harmonic sums modulo p^alpha q^beta, arXiv preprint arXiv:1503.02798 [math.NT], 2015.
W. W. Chao, Problem 2981, Crux Mathematicorum, 30 (2004), p. 430.
Yasuaki Gyoda, Positive integer solutions to (x+y)^2+(y+z)^2+(z+x)^2=12xyz, arXiv:2109.09639 [math.NT], 2021. See Remark 3.3 p. 6.
W. H. Mills, A system of quadratic Diophantine equations. Pacific J. Math. 3:1 (1953), 209-220.
FORMULA
Recurrence: a(1)=a(2)=1 and a(n+1)=(1+a(n)+a(n)^2)/a(n-1) for n>2.
G.f.: x(1 - 5x + 3x^2) / [(1-x)(1 - 5x + x^2)]; a(n) = 2 * A089817(n-3) + 1, n>2. - Conjectured by Ralf Stephan, Jan 14 2005, proved by Max Alekseyev, Aug 03 2006
a(n) = 6a(n-1)-6a(n-2)+a(n-3), a(n) = 5a(n-1)-a(n-2)-1. - Floor van Lamoen, Aug 01 2006
a(n) = (4/3 - (2/7)*sqrt(21))*((5 + sqrt(21))/2)^n + (4/3 + (2/7)*sqrt(21))*((5 - sqrt(21))/2)^n + 1/3. - Floor van Lamoen, Aug 04 2006
For n>1, a(n) = (2 * A004253(n-1) + 1) / 3. - Max Alekseyev, May 23 2022
EXAMPLE
a(5) = 61 because (1 + a(4) + a(4)^2)/a(3) = (1 + 13 + 169)/3 = 61.
MAPLE
seq(coeff(series(x*(1-5*x+3*x^2)/((1-x)*(1-5*x+x^2)), x, n+1), x, n), n = 1 .. 30); # Muniru A Asiru, Dec 28 2018
MATHEMATICA
Rest@ CoefficientList[Series[x (1 - 5 x + 3 x^2)/((1 - x) (1 - 5 x + x^2)), {x, 0, 28}], x] (* or *)
RecurrenceTable[{a[n] == (1 + a[n - 1] + a[n - 1]^2)/a[n - 2], a[1] == a[2] == 1}, a, {n, 1, 28}] (* or *)
RecurrenceTable[{a[n] == 5 a[n - 1] - a[n - 2] - 1, a[1] == a[2] == 1}, a, {n, 1, 28}] (* or *)
LinearRecurrence[{6, -6, 1}, {1, 1, 3}, 28] (* Michael De Vlieger, Aug 28 2016 *)
PROG
(PARI) Vec(x*(1-5*x+3*x^2)/((1-x)*(1-5*x+x^2)) + O(x^30)) \\ Michel Marcus, Aug 03 2016
(PARI) a(n)=([0, 1, 0; 0, 0, 1; 1, -6, 6]^n*[3; 1; 1])[1, 1] \\ Charles R Greathouse IV, Aug 28 2016
(Magma) [n le 2 select 1 else 5*Self(n-1)-Self(n-2)-1: n in [1..30]]; // Vincenzo Librandi, Dec 25 2018
(GAP) a:=[1, 1];; for n in [3..30] do a[n]:=5*a[n-1]-a[n-2]-1; od; Print(a); # Muniru A Asiru, Dec 28 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
M. Benito, O. Ciaurri and E. Fernandez (oscar.ciaurri(AT)dmc.unirioja.es), Jan 13 2005
STATUS
approved
Triangle T(n,k), read by rows given by [1,0,1,0,0,0,0,0,0,...] DELTA [0,1,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938.
+10
14
1, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 6, 5, 1, 0, 1, 10, 15, 7, 1, 0, 1, 15, 35, 28, 9, 1, 0, 1, 21, 70, 84, 45, 11, 1, 0, 1, 28, 126, 210, 165, 66, 13, 1, 0, 1, 36, 210, 462, 495, 286, 91, 15, 1, 0, 1, 45, 330, 924, 1287, 1001, 455, 120, 17, 1, 0, 1, 55, 495, 1716, 3003, 3003, 1820, 680
OFFSET
0,8
COMMENTS
Mirror image of triangle in A121314.
LINKS
FORMULA
T(0,0)=1, T(n,k) = binomial(n-1+k,2k) for n >= 1.
Sum {k=0..n} T(n,k)*x^k = A000012(n), A001519(n), A001835(n), A004253(n), A001653(n), A049685(n-1), A070997(n-1), A070998(n-1), A072256(n), A078922(n), A077417(n-1), A085260(n), A001570(n) for x = 0,1,2,3,4,5,6,7,8,9,10,11,12 respectively.
Sum_{k=0..n} T(n,k)*x^(n-k) = A000007(n), A001519(n), A047849(n), A165310(n), A165311(n), A165312(n), A165314(n), A165322(n), A165323(n), A165324(n) for x= 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 respectively. - Philippe Deléham, Sep 26 2009
T(n,k) = 2*T(n-1,k) + T(n-1,k-1) - T(n-2,k), T(0,0)=T(1,0)=1, T(1,1)=0. - Philippe Deléham, Feb 18 2012
G.f.: (1-x-y*x)/((1-x)^2-y*x). - Philippe Deléham, Feb 19 2012
EXAMPLE
Triangle begins:
1;
1, 0;
1, 1, 0;
1, 3, 1, 0;
1, 6, 5, 1, 0;
1, 10, 15, 7, 1, 0;
1, 15, 35, 28, 9, 1, 0;
1, 21, 70, 84, 45, 11, 1, 0;
1, 28, 126, 210, 165, 66, 13, 1, 0;
1, 36, 210, 462, 495, 286, 91, 15, 1, 0,
1, 45, 330, 924, 1287, 1001, 455, 120, 17, 1, 0;
MATHEMATICA
m = 13;
(* DELTA is defined in A084938 *)
DELTA[Join[{1, 0, 1}, Table[0, {m}]], Join[{0, 1}, Table[0, {m}]], m] // Flatten (* Jean-François Alcover, Feb 19 2020 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Philippe Deléham, Sep 10 2009
STATUS
approved

Search completed in 0.028 seconds