Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Search: a005721 -id:a005721
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = binomial(3n,n)*CQC(n), where CQC(n) = A005721(n) = A005190(2n) is a central quadrinomial coefficient.
+20
3
1, 12, 660, 48720, 4005540, 349260912, 31626298704, 2940502593600, 278788387440420, 26831860080682800, 2613367831568654160, 257012469788428710720, 25479526081439438845200, 2543092744417831625342400, 255292245777771431285140800, 25755871314484468746363582720
OFFSET
0,2
COMMENTS
Compare with EllipticK A002894 and the Ramanujan period-energy functions A113424, A006480, A000897. The series expansion "T(x) = 2*Pi*Sum_{n>=0} a_n*x^n" determines the real period T of elliptic curves in the family "x=p^2+q^2-4*(q^2-p^2)*q, 0 < x < 1/108". This sequence serves as a counterexample to the naive idea that elliptic integrals will always evaluate to a hypergeometric function such as 2F1(a,b;c;x).
A300058 is the complex period-energy function, after scaling energy and time dimensions such that all a(n) are integers and a(0)=1. The Picard-Fuchs equation is "(12-288*x+9216*x^2)*T(x) + (-1+232*x-8160*x^2+82944*x^3)*T'(x) + (-x+164*x^2-6432*x^3+41472*x^4)*T''(x)".
Although the sequence is not generated by a hypergeometric function, it can be formulated in terms of Hypergeometric numbers, specifically the binomial coefficients. Then Zeilberger's algorithm outputs a second order recurrence with polynomial coefficients.
The contour plot is nice to look at, with reflection symmetry, three critical points, and two separatrices dividing the phase plane into eight distinct regions.
Hyperbolic Critical points are located at (q,p) locations (1/6,0) and (-1/4,sqrt(5)/4) and (-1/4,-sqrt(5)/4). Is it possible to use chord-and-tangent addition rules to produce an exponentially-convergent Diophantine approximation to sqrt(5) that moves along the upper separatrix x=1/8?
Does there exist a period-preserving transformation that takes any one of the curves with 0 < x < 1/108 into a particular Weierstrass curve from the L-function and Modular Forms Database?
REFERENCES
D. Husemöller, Elliptic Curves, 2nd ed., New York: Springer, 2004.
J. H. Silverman, The Arithmetic of Elliptic Curves, 2nd ed., New York: Springer, 2009.
LINKS
J. Cremona, Elliptic Curves over Q, LMFDB 2017.
B. Klee, The Virtues of X_{n+1} = (4+3*X_{n})/(3+2*X_{n}), seqfans mailing list, 2017.
B. Klee, Geometric G.F. for Ramanujan Periods, seqfans mailing list, 2017.
Brad Klee, Deriving Hypergeometric Picard-Fuchs Equations, Wolfram Demonstrations Project (2018).
Bradley Klee, Phase Plane Geometry.
M. Kontsevich and D. Zagier, Periods, Institut des Hautes Etudes Scientifiques 2001 IHES/M/01/22.
D. Zeilberger, The Method of Creative Telescoping, Journal of Symbolic Computation, 11.3 (1991), 195-204.
FORMULA
a(n) = A005809(n)*A005721(n).
a(n) = Sum_{k=0..floor(3n/4)} ((-1)^k)*binomial(3*n,n)*binomial(2 *n, k)*binomial(5*n - 4*k - 1, 3*n - 4*k).
c1 = 8 *(-30 + 201*n - 319*n^2 + 145*n^3); c2 = -8640*(n - 5/3)*(n - 4/3)*(n - 1/5); c3 = 10*(n - 6/5)*n^2; a(0)=1; a(1)=12; a(n) = (c1/c3)*a(n-1) + (c2/c3)*a(n-2).
MATHEMATICA
b[NN_]:=Total/@Table[((-1)^k)*Binomial[3*n, n]*Binomial[2*n, k]*Binomial[5*n-4*k-1, 3*n-4*k], {n, 0, NN}, {k, 0, Floor[3*n/4]}];
c1=8*(-30+201*n-319*n^2+145*n^3); c2=-8640*(n-5/3)*(n-4/3)*(n-1/5); c3=10*(n-6/5)*n^2; a[0]=1; a[1]=12; a[n0_]:=ReplaceAll[(c1/c3)*a[n0-1]+(c2/c3)*a[n0-2], {n->n0}];
({#, SameQ[a/@Range[0, 15], #]}&@b[15])[[1]]
CROSSREFS
Factors: A005190, A005809, A005721.
Complex Period: A300058.
KEYWORD
nonn
AUTHOR
Bradley Klee, Feb 23 2018
STATUS
approved
Central sextinomial coefficients.
+10
6
1, 6, 146, 4332, 135954, 4395456, 144840476, 4836766584, 163112472594, 5542414273884, 189456975899496, 6507792553644256, 224442843729333276, 7766945604528200460, 269557528994032024080, 9378595792117360310832
OFFSET
0,2
COMMENTS
Largest coefficient of (Sum_{j=0..5} x^j)^(2*n). a(n)= A018901(2*n).
The exponent of 2 in prime factorization of a(n) for n=1,2,...,7 is in A023520. - Roman Witula, Oct 07 2012
Central coefficients in triangle A063260. - Zagros Lalo, Sep 25 2018
REFERENCES
Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 605, 606.
R. Witula and D. Slota, Central trinomial coefficients and convolution type identities, Congressus Numerantium 201 (2010), 109-126.
LINKS
FORMULA
a(n) = A063260(2*n, 5*n)= [x^(5*n)](Sum_{j=0..5} x^j)^(2*n).
a(n) = Sum_{k=0..floor(5*n/6)} ((-1)^(k)*binomial(2*n,k)*binomial(7*n-6*k-1, 2*n-1)). - Warut Roonguthai, May 22 2006
2*Pi*a(n) = Integral[-Pi;Pi] (sin(6*x)/sin(x))^(2*n) dx. The proof of this fact is in the Witula/Slota paper. - Roman Witula, Oct 07 2012
The Almkvist-Zeilberger algorithm in EKHAD establishes the following recurrence: -31104*(2*n+5)*(2*n+3)*(2*n+1)*(7*n+19)*(5*n+11)*(7*n+20)*(7*n+13)*(n+2)*(n+1)*a(n)+ 864*(7*n+20)*(2*n+5)*(2*n+3)*(n+2)*(25480*n^5+ 223496*n^4+755066*n^3+1223233*n^2+946889*n+279936)*a(n+1)- 6*(5*n+6)*(2*n+5)*(7*n+6)*(499359*n^6+ 6777015*n^5+38079431*n^4+113390385*n^3+18872398*n^2+ 166469280*n+60800544)*a(n+2)+ 5*(5*n+14)*(5*n+13)*(5*n+12)*(7*n+12)*(5*n+11)*(5*n+6)*(7*n+13)*(7*n+6)*(n+3)*a(n+3) = 0. - Doron Zeilberger, Apr 02 2013
a(n) ~ sqrt(3) * 36^n / sqrt(35*Pi*n). - Vaclav Kotesovec, Dec 09 2021
MATHEMATICA
Table[Sum[(-1)^k*Binomial[2*n, k]*Binomial[7*n - 6*k - 1, 2*n - 1], {k, 0, Floor[5*n/6]}], {n, 0, 50}] (* G. C. Greubel, Mar 02 2017 *)
PROG
(PARI) concat([1], for(n=1, 25, print1(sum(k=0, floor(5*n/6), (-1)^(k)*binomial(2*n, k)* binomial(7*n-6*k-1, 2*n-1)), ", "))) \\ G. C. Greubel, Mar 02 2017
(GAP) Concatenation([1], List([1..15], n->Sum([0..Int(5*n/6)], k->(-1)^k*Binomial(2*n, k)*Binomial(7*n-6*k-1, 2*n-1)))); # Muniru A Asiru, Sep 26 2018
CROSSREFS
Central q-nomial coefficients (appearing once) for q=2..5: A000984, A002426, A005721, A005191. For q=7: A025012.
Cf. A063260.
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Jul 24 2001
STATUS
approved
Three-dimensional array written by antidiagonals in k,n: T(k,n,h) with k >= 1, n >= 0, 0 <= h <= n*(k-1) is the coefficient of x^h in the polynomial (1 + x + ... + x^(k-1))^n = ((x^k-1)/(x-1))^n.
+10
6
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 2, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 3, 2, 1, 1, 3, 6, 7, 6, 3, 1, 1, 4, 6, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 4, 3, 2, 1, 1, 3, 6, 10, 12, 12, 10, 6, 3, 1, 1, 4, 10
OFFSET
1,13
COMMENTS
Equivalently, T(k,n,h) is the number of ordered sets of n nonnegative integers < k with the sum equal to h.
From Juan Pablo Herrera P., Nov 21 2016: (Start)
T(k,n,h) is the number of possible ways of randomly selecting h cards from k-1 sets, each with n different playing cards. It is also the number of lattice paths from (0,0) to (n,h) using steps (1,0), (1,1), (1,2), ..., (1,k-1).
Shallow diagonal sums of each triangle with fixed k give the k-bonacci numbers. (End)
T(k,n,h) is the number of n-dimensional grid points of a k X k X ... X k grid, which are lying in the (n-1)-dimensional hyperplane which is at an L1 distance of h from one of the grid's corners, and normal to the corresponding main diagonal of the grid. - Eitan Y. Levine, Apr 23 2023
LINKS
Florentin Smarandache, K-Nomial Coefficients, arXiv:math/0612062 [math.GM], 2006 (originally published in French in: F. Smarandache, Généralisations et Généralités, Ed. Nouvelle, 1984, pp. 24-26).
FORMULA
T(k,n,h) = Sum_{i = 0..floor(h/k)} (-1)^i*binomial(n,i)*binomial(n+h-1-k*i,n-1). [Corrected by Eitan Y. Levine, Apr 23 2023]
From Eitan Y. Levine, Apr 23 2023: (Start)
(T(k,n,h))_{h=0..n*(k-1)} = f(f(...f(g(P))...)), where:
(x_i)_{i=0..m} denotes a tuple (in particular, the LHS contains the values for 0 <= h <= n*(k-1)),
f repeats n times,
f((x_i)_{i=0..m}) = (Sum_{j=0..i} x_j)_{i=0..m} is the cumulative sum function,
g((x_i)_{i=0..m}) = (x_(i/k) if k|i, otherwise 0)_{i=0..m*k} is adding k-1 zeros between adjacent elements,
and P=((-1)^i*binomial(n,i))_{i=0..n} is the n-th row of Pascal's triangle, with alternating signs. (End)
From Eitan Y. Levine, Jul 27 2023: (Start)
Recurrence relations, the first follows from the sequence's defining polynomial as mentioned in the Smarandache link:
T(k,n+1,h) = Sum_{i = 0..s-1} T(k,n,h-i)
T(k+1,n,h) = Sum_{i = 0..n} binomial(n,i)*T(k,n-i,h-i*k) (End)
EXAMPLE
For first few k and for first few n, the rows with h = 0..n*(k-1) are given:
k=1: 1; 1; 1; 1; 1; ...
k=2: 1; 1, 1; 1, 2, 1; 1, 3, 3, 1; 1, 4, 6, 4, 1; ...
k=3: 1; 1, 1, 1; 1, 2, 3, 2, 1; 1, 3, 6, 7, 6, 3, 1; ...
k=4: 1; 1, 1, 1, 1; 1, 2, 3, 4, 3, 2, 1; ...
For example, (1 + x + x^2)^3 = 1 + 3*x + 6*x^2 + 7*x^3 + 6*x^4 + 3*x^5 + x^6, hence T(3,3,2) = T(3,3,4) = 6.
From Eitan Y. Levine, Apr 23 2023: (Start)
Example for the repeated cumulative sum formula, for (k,n)=(3,3) (each line is the cumulative sum of the previous line, and the first line is the padded, alternating 3rd row from Pascal's triangle):
1 0 0 -3 0 0 3 0 0 -1
1 1 1 -2 -2 -2 1 1 1
1 2 3 1 -1 -3 -2 -1
1 3 6 7 6 3 1
which is T(3,3,h). (End)
MATHEMATICA
a = Table[CoefficientList[Sum[x^(h-1), {h, k}]^n, x], {k, 10}, {n, 0, 9}];
Flatten@Table[a[[s-n, n+1]], {s, 10}, {n, 0, s-1}]
(* alternate program *)
row[k_, n_] := Nest[Accumulate, Upsample[Table[((-1)^j)*Binomial[n, j], {j, 0, n}], k], n][[;; n*(k-1)+1]] (* Eitan Y. Levine, Apr 23 2023 *)
CROSSREFS
k-nomial arrays for fixed k=1..10: A000012, A007318, A027907, A008287, A035343, A063260, A063265, A171890, A213652, A213651.
Arrays for fixed n=0..6: A000012, A000012, A004737, A109439, A277949, A277950, A277951.
Central n-nomial coefficients for n=1..9, i.e., sequences with h=floor(n*(k-1)/2) and fixed n: A000012, A000984 (A001405), A002426, A005721 (A005190), A005191, A063419 (A018901), A025012, (A025013), A025014, A174061 (A025015), A201549, (A225779), A201550. Arrays: A201552, A077042, see also cfs. therein.
Triangle n=k-1: A181567. Triangle n=k: A163181.
KEYWORD
nonn,tabf,easy
AUTHOR
Andrey Zabolotskiy, Nov 10 2016
STATUS
approved
a(n) = binomial(3*n,n)/(2*Pi)*Integral_{x=0..2*Pi} (12*cos^2(x)*sin(x) + 20*sin^3(x))^(2*n) dx.
+10
3
1, 492, 707220, 1298204880, 2654173160100, 5765723073622512, 13021894087331233104, 30217387890886676251200, 71532102917478013611243300, 171944976047709681477985038000, 418347201888204996027087975427920
OFFSET
0,2
COMMENTS
Compare with A295870. The series expansion "T(x)=2*Pi*sqrt(3/5)*Sum_{n>=0} a_n*(x/25)^n" determines the period T of anharmonic oscillation along a contour of the Hamiltonian energy surface "x=2H=(5/3)*p^2+q^2+4*(p^2+q^2)*q,0<x<1/108".
The period-energy function T(x) satisfies the Picard-Fuchs equation "(2460+28512*x+2239488*x^2)*T(x)-(125-24840*x-1423008*x^2-20155392*x^3)*T'(x)+(-125*x+1620*x^2+1189728*x^3+10077696 x^4)*T''(x)", also the P.F.Eq. of A295870 under transformation x->x'=1/108-x.
A300057 has a similar definition to A005721, with a couple of extra integers appearing in the integrand. This makes a nice analogy between real and complex periods A295870, A300058. Second-order recurrences with polynomial coefficients define both sequences.
LINKS
Bradley Klee, Phase Plane Geometry.
Brad Klee, Deriving Hypergeometric Picard-Fuchs Equations, Wolfram Demonstrations Project (2018).
M. Kontsevich and D. Zagier, Periods, Institut des Hautes Etudes Scientifiques 2001 IHES/M/01/22.
FORMULA
a(n) = A005809(n)*A300057(n).
a(n) = Sum_{k1=0..2n} Sum_{k2=0..2n} binomial(3*n,n)*binomial(2*n,k2)*binomial(2*n,k1)*binomial(2*n,3*n-k1-k2)*((4+sqrt(15))^(2*n-k1))*((4-sqrt(15))^(2*n-k2))
a(0) = 1; a(1) = 492; a(n):=(c1/c3)*a(n-1)+(c2/c3)*a(n-2); with
c1 = 12*(-230+2259*n-3933*n^2+1863*n^3);
c2 = 5248800*(n-5/3)*(n-4/3)*(n-1/9);
c3 = 9*n^2*(n-10/9);
a(n) ~ 2^(2*n - 1) * 3^(3*n - 1/2) * 5^(2*n + 1/2) / (Pi*n). - Vaclav Kotesovec, Apr 18 2018
MAPLE
a := n -> 36^n*(3*n)!/n!^3*hypergeom([-2*n, n+1/2], [n+1], -2/3):
seq(simplify(a(n)), n=0..10); # Peter Luschny, Apr 19 2018
MATHEMATICA
c1=12*(-230+2259*n-3933*n^2+1863*n^3); c2=5248800*(n-5/3)*(n-4/3)*(n-1/9); c3=9*n^2*(n-10/9); a[0]=1; a[1]=492; a[n0_]:=ReplaceAll[(c1/c3)*a[n0-1]+(c2/c3)*a[n0-2], n->n0];
b[NN_]:=Expand[Total[Flatten[#]]&/@Table[Binomial[3*n, n]*Binomial[2*n, k2]*Binomial[2*n, k1]*Binomial[2*n, 3*n-k1-k2]*((4+Sqrt[15])^(2*n-k1))*((4-Sqrt[15])^(2*n-k2)), {n, 0, NN}, {k1, 0, 2*n}, {k2, 0, 2*n}]]; ({#, SameQ[#, a/@Range[0, 10]]}&@b[10])[[1]]
Table[Binomial[3*n, n] * SeriesCoefficient[(1 + 9*z + 9*z^2 + z^3)^(2*n), {z, 0, 3*n}], {n, 0, 15}] (* Vaclav Kotesovec, Apr 18 2018 *)
CROSSREFS
Cf. A002894, A113424, A006480, A000897. Factors: A005809, A300057. Real Period: A295870.
KEYWORD
nonn
AUTHOR
Bradley Klee, Feb 23 2018
STATUS
approved
Array read by ascending antidiagonals: the s-th column gives the central s-binomial coefficients.
+10
3
1, 1, 1, 1, 2, 1, 1, 6, 3, 1, 1, 20, 19, 4, 1, 1, 70, 141, 44, 5, 1, 1, 252, 1107, 580, 85, 6, 1, 1, 924, 8953, 8092, 1751, 146, 7, 1, 1, 3432, 73789, 116304, 38165, 4332, 231, 8, 1, 1, 12870, 616227, 1703636, 856945, 135954, 9331, 344, 9, 1, 1, 48620, 5196627, 25288120, 19611175, 4395456, 398567, 18152, 489, 10, 1
OFFSET
0,5
LINKS
William Linz, s-Catalan numbers and Littlewood-Richardson polynomials, arXiv:2110.12095 [math.CO], 2021. See p. 2.
FORMULA
A(n, s) = T(2*n, s*n, s), where T(n, k, s) is the s-binomial coefficient defined as the coefficient of x^k in (Sum_{i=0..s} x^i)^n.
EXAMPLE
The array begins:
n\s | 0 1 2 3 4
----+----------------------------
0 | 1 1 1 1 1 ...
1 | 1 2 3 4 5 ...
2 | 1 6 19 44 85 ...
3 | 1 20 141 580 1751 ...
4 | 1 70 1107 8092 38165 ...
...
MATHEMATICA
T[n_, k_, s_]:=If[k==0, 1, Coefficient[(Sum[x^i, {i, 0, s}])^n, x^k]]; A[n_, s_]:=T[2n, s n, s]; Flatten[Table[A[n-s, s], {n, 0, 9}, {s, 0, n}]]
CROSSREFS
Cf. A000984 (s=1), A082758 (s=2), A005721 (s=3), A349936 (s=4), A063419 (s=5), A270918 (n=s), A163269 (s>0).
KEYWORD
nonn,easy,tabl
AUTHOR
Stefano Spezia, Dec 06 2021
STATUS
approved
G.f. satisfies: A(x) = exp( Sum_{n>=1} [Sum_{k=0..3*n} T(n,k)^2 * x^k] / A(x)^n * x^n/n ) where T(n,k) equals the coefficient of x^k in (1+x+x^2+x^3)^n.
+10
2
1, 1, 1, 2, 4, 8, 13, 24, 45, 85, 161, 305, 582, 1116, 2149, 4152, 8049, 15653, 30528, 59695, 117012, 229880, 452565, 892703, 1764099, 3492029, 6923494, 13747483, 27335873, 54427621, 108505081, 216568556, 432740907, 865610375, 1733227339, 3473805680, 6968708734, 13991916510, 28116598325
OFFSET
0,4
COMMENTS
Compare the definition of this sequence to G(x) = exp( Sum_{n>=1} [Sum_{k=0..2*n} T(n,k)^2 * x^k] / G(x)^n * x^n/n ) where T(n,k) = [x^k] (1+x+x^2)^n, which is satisfied by the rational function: G(x) = (1+x^3)*(1+x^6)/((1-x)*(1-x^4)).
LINKS
EXAMPLE
G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 4*x^4 + 8*x^5 + 13*x^6 + 24*x^7 +...
where
log(A(x)) = (1 + x + x^2 + x^3)/A(x) * x +
(1 + 2^2*x + 3^2*x^2 + 4^2*x^3 + 3^2*x^4 + 2^2*x^5 + x^6)/A(x)^2 * x^2/2 +
(1 + 3^2*x + 6^2*x^2 + 10^2*x^3 + 12^2*x^4 + 12^2*x^5 + 10^2*x^6 + 6^2*x^7 + 3^2*x^8 + x^9)/A(x)^3 * x^3/3 +
(1 + 4^2*x + 10^2*x^2 + 20^2*x^3 + 31^2*x^4 + 40^2*x^5 + 44^2*x^6 + 40^2*x^7 + 31^2*x^8 + 20^2*x^9 + 10^2*x^10 + 4^2*x^11 + x^12)/A(x)^4 * x^4/4 +
which involves the squares of the coefficients in (1 + x + x^2 + x^3)^n.
PROG
(PARI) /* By Definition: */
{T(n, k)=polcoeff((1 + x + x^2 + x^3 + x*O(x^k))^n, k)}
{a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sum(k=0, min(3*m, n-m), T(m, k)^2 * x^k) / (A +x*O(x^n))^m * x^m/m)+x*O(x^n))); polcoeff(A, n)}
for(n=0, 40, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 04 2015
STATUS
approved
G.f. satisfies: A(x) = exp( Sum_{n>=1} [Sum_{k=0..3*n} binomial(3*n,k)^2 * x^k] / A(x)^n * x^n/n ).
+10
2
1, 1, 9, 18, 64, 172, 477, 1368, 3681, 10485, 28701, 80829, 225090, 632160, 1778553, 5010948, 14181849, 40161357, 114151716, 324873027, 926918784, 2649218580, 7585705665, 21758756931, 62508649059, 179859399129, 518234494662, 1495275239115, 4319808231645, 12495043092609, 36183457564425
OFFSET
0,3
COMMENTS
Compare the definition of this sequence to G(x) = exp( Sum_{n>=1} [Sum_{k=0..2*n} binomial(2*n,k)^2 * x^k] / G(x)^n * x^n/n ), which is satisfied by the rational function: G(x) = (1+x^2)^2*(1+x^3)/((1-x)*(1-x^2)).
LINKS
EXAMPLE
G.f.: A(x) = 1 + x + 9*x^2 + 18*x^3 + 64*x^4 + 172*x^5 + 477*x^6 +...
where
log(A(x)) = (1 + 3^2*x + 3^2*x^2 + x^3)/A(x) * x +
(1 + 6^2*x + 15^2*x^2 + 20^2*x^3 + 15^2*x^4 + 6^2*x^5 + x^6)/A(x)^2 * x^/2 +
(1 + 9^2*x + 36^2*x^2 + 84^2*x^3 + 126^2*x^4 + 126^2*x^5 + 84^2*x^6 + 36^2*x^7 + 9^2*x^8 + x^9)/A(x)^3 * x^3/3 +
(1 + 12^2*x + 66^2*x^2 + 220^2*x^3 + 495^2*x^4 + 792^2*x^5 + 924^2*x^6 + 792^2*x^7 + 495^2*x^8 + 220^2*x^9 + 66^2*x^10 + 12^2*x^11 + x^12)/A(x)^4 * x^4/4 +...
which involves the squares of the coefficients in (1 + x)^(3*n).
PROG
(PARI) /* By Definition: */
{a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sum(k=0, min(3*m, n-m), binomial(3*m, k)^2 * x^k) / (A +x*O(x^n))^m * x^m/m)+x*O(x^n))); polcoeff(A, n)}
for(n=0, 40, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 07 2015
STATUS
approved
Coefficient of z^(3*n) in the expansion of (1 + 9*z + 9*z^2 + z^3)^(2*n).
+10
2
1, 164, 47148, 15454820, 5361965980, 1919987703504, 701459496193236, 259867456921970040, 97260263038893462300, 36686877800581349096240, 13924013746979490475444528, 5311128944356277793155688612, 2034235241375650519750351973188
OFFSET
0,2
LINKS
FORMULA
a(n) = 1/(2*Pi)*Integral_{0..2*Pi}(12*cos^2(x)*sin(x) + 20*sin^3(x))^(2*n) dx.
a(n) = Sum_{k1=0..2*n} Sum_{k2=0..2*n} binomial(2*n,k1)*binomial(2*n,k2)*binomial(2*n,3*n-k1-k2)*((4-sqrt(15))^(2*n-k1))*((4+sqrt(15))^(2*n-k2)).
a(n) = (c1/c3)*a(n-1)+(c2/c3)*a(n-2); with a(0)=1; a(1)=164; and
c1=16*(n-1/2)*(-230+2259*n-3933*n^2+1863*n^3);
c2=1036800*(n-1)*(n-3/2)*(n-1/2)*(n-1/9);
c3=81*n*(n-2/3)*(n-1/3)*(n-10/9).
From Wolfdieter Lang, Apr 06 2018: (Start)
a(n) = 4^(2*n)*(2/Pi)*Integral_{0..Pi/2} sin(x)^(2*n)*(3 + 2*sin(x)^2)^(2*n) dx. With the binomial formula and integrals over even powers of sin(x) this becomes
a(n) = 6^(2*n)*Sum_{k=0..2*n} binomial(2*n, k)*binomial(2*(n+k), n+k)*(1/6)^k = 6^(2*n)*binomial(2*n, n)*hypergeometric([-2*n, n+1/2], [n+1], -2/3). (End)
a(n) ~ 2^(4*n) * 5^(2*n + 1/2) / (3*sqrt(Pi*n)). - Vaclav Kotesovec, Apr 18 2018
MATHEMATICA
c1=16*(n-1/2)*(-230+2259*n-3933*n^2+1863*n^3); c2=1036800*(n-1)*(n-3/2)*(n-1/2)*(n-1/9); c3=81*n*(n-2/3)*(n-1/3)*(n-10/9); a[0]=1; a[1]=164; a[n0_]:=ReplaceAll[(c1/c3)*a[n0-1]+(c2/c3)*a[n0-2], n->n0]
b[NN_]:=Expand[Total[Flatten[#]]&/@Table[Binomial[2*n, k2]*Binomial[2*n, k1]*Binomial[2*n, 3*n-k1-k2]*(4 + Sqrt[15])^(2*n-k1)*(4-Sqrt[15])^(2*n-k2), {n, 0, NN}, {k1, 0, 2*n}, {k2, 0, 2*n}]]
({#, SameQ[Coefficient[(1+9*z+9*z^2+z^3)^(2*#), z, 3*#]&/@Range[0, 10], #], SameQ[a/@Range[0, 10], #]}&@b[10])[[1]]
Table[SeriesCoefficient[(1 + 9*z + 9*z^2 + z^3)^(2*n), {z, 0, 3*n}], {n, 0, 15}] (* Vaclav Kotesovec, Apr 18 2018 *)
PROG
(PARI) a(n) = polcoeff((1 + 9*z + 9*z^2 + z^3)^(2*n), 3*n); \\ Michel Marcus, Mar 06 2018
(GAP) List([0..15], n->6^(2*n)Sum([0..2*n], k->Binomial(2*n, k)*Binomial(2*(n+k), n+k)*(1/6)^k)); # Muniru A Asiru, Apr 07 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Bradley Klee, Feb 23 2018
STATUS
approved
Square array T(n,k), n>=0, k>=0, read by antidiagonals, where T(n,k) is the constant term in the expansion of ( Sum_{j=1..k} x_j^(2*j-1) + x_j^(-(2*j-1)) )^(2*n).
+10
2
1, 1, 0, 1, 2, 0, 1, 4, 6, 0, 1, 6, 44, 20, 0, 1, 8, 146, 580, 70, 0, 1, 10, 344, 4332, 8092, 252, 0, 1, 12, 670, 18152, 135954, 116304, 924, 0, 1, 14, 1156, 55252, 1012664, 4395456, 1703636, 3432, 0, 1, 16, 1834, 137292, 4816030, 58199208, 144840476, 25288120, 12870, 0
OFFSET
0,5
LINKS
FORMULA
T(n,k) = Sum_{j=0..floor((2*k-1)*n/(2*k))} (-1)^j * binomial(2*n,j) * binomial((2*k+1)*n-2*k*j-1,(2*k-1)*n-2*k*j) for k > 0.
EXAMPLE
(x^3 + x + 1/x + 1/x^3)^2 = x^6 + 2*x^4 + 3*x^2 + 4 + 3/x^2 + 2/x^4 + 1/x^6. So T(1,2) = 4.
Square array begins:
1, 1, 1, 1, 1, 1, ...
0, 2, 4, 6, 8, 10, ...
0, 6, 44, 146, 344, 670, ...
0, 20, 580, 4332, 18152, 55252, ...
0, 70, 8092, 135954, 1012664, 4816030, ...
0, 252, 116304, 4395456, 58199208, 432457640, ...
MATHEMATICA
T[n_, 0] = Boole[n == 0]; T[n_, k_] := Sum[(-1)^j * Binomial[2*n, j] * Binomial[(2*k + 1)*n - 2*k*j - 1, (2*k - 1)*n - 2*k*j], {j, 0, Floor[(2*k - 1)*n/(2*k)]}]; Table[T[k, n - k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, May 06 2021 *)
CROSSREFS
Columns k=0-3 give A000007, A000984, A005721, A063419.
Rows n=0-2 give A000012, A005843, 2*A143166.
Main diagonal gives A329021.
Cf. A077042.
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, Nov 02 2019
STATUS
approved
Central pentanomial coefficients.
+10
2
1, 5, 85, 1751, 38165, 856945, 19611175, 454805755, 10651488789, 251345549849, 5966636799745, 142330448514875, 3408895901222375, 81922110160246231, 1974442362935339179, 47705925773278538281, 1155170746105476171285, 28025439409568101909625, 681077893998769910221225
OFFSET
0,2
COMMENTS
Largest coefficient of (Sum_{j=0..4} x^j)^(2*n).
LINKS
FORMULA
a(n) = T(2*n, 4*n, 4), where T(n, k, s) is the s-binomial coefficient defined as the coefficient of x^k in (Sum_{i=0..s} x^i)^n.
a(n) = A035343(2*n, 4*n) = [x^(4*n)] (Sum_{j=0..4} x^j)^(2*n).
From Vaclav Kotesovec, Dec 09 2021: (Start)
Recurrence: 2*n*(2*n - 1)*(3*n - 4)*(4*n - 7)*(4*n - 3)*(4*n - 1)*(6*n - 13)*(6*n - 7)*a(n) = 3*(4*n - 7)*(6*n - 13)*(10584*n^6 - 47628*n^5 + 84190*n^4 - 73965*n^3 + 33531*n^2 - 7272*n + 570)*a(n-1) - 75*(n-1)*(2*n - 3)*(4*n - 5)*(6*n - 1)*(504*n^4 - 2520*n^3 + 4160*n^2 - 2525*n + 476)*a(n-2) + 625*(n-2)*(n-1)*(2*n - 5)*(2*n - 3)*(3*n - 1)*(4*n - 3)*(6*n - 7)*(6*n - 1)*a(n-3).
a(n) ~ 25^n / sqrt(8*Pi*n). (End)
MATHEMATICA
T[n_, k_, s_]:=If[k==0, 1, Coefficient[(Sum[x^i, {i, 0, s}])^n, x^k]]; Table[T[2n, 4n, 4], {n, 0, 18}]
CROSSREFS
Central coefficients in triangle A035343.
Column s = 4 in A349933.
KEYWORD
nonn,easy
AUTHOR
Stefano Spezia, Dec 06 2021
STATUS
approved

Search completed in 0.011 seconds