Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Search: a016627 -id:a016627
     Sort: relevance | references | number | modified | created      Format: long | short | data
1's-counting sequence: number of 1's in binary expansion of n (or the binary weight of n).
(Formerly M0105 N0041)
+10
1980
0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 2, 3, 3, 4, 3, 4, 4, 5, 3
OFFSET
0,4
COMMENTS
The binary weight of n is also called Hamming weight of n. [The term "Hamming weight" was named after the American mathematician Richard Wesley Hamming (1915-1998). - Amiram Eldar, Jun 16 2021]
a(n) is also the largest integer such that 2^a(n) divides binomial(2n, n) = A000984(n). - Benoit Cloitre, Mar 27 2002
To construct the sequence, start with 0 and use the rule: If k >= 0 and a(0), a(1), ..., a(2^k-1) are the first 2^k terms, then the next 2^k terms are a(0) + 1, a(1) + 1, ..., a(2^k-1) + 1. - Benoit Cloitre, Jan 30 2003
An example of a fractal sequence. That is, if you omit every other number in the sequence, you get the original sequence. And of course this can be repeated. So if you form the sequence a(0 * 2^n), a(1 * 2^n), a(2 * 2^n), a(3 * 2^n), ... (for any integer n > 0), you get the original sequence. - Christopher.Hills(AT)sepura.co.uk, May 14 2003
The n-th row of Pascal's triangle has 2^k distinct odd binomial coefficients where k = a(n) - 1. - Lekraj Beedassy, May 15 2003
Fixed point of the morphism 0 -> 01, 1 -> 12, 2 -> 23, 3 -> 34, 4 -> 45, etc., starting from a(0) = 0. - Robert G. Wilson v, Jan 24 2006
a(n) is the number of times n appears among the mystery calculator sequences: A005408, A042964, A047566, A115419, A115420, A115421. - Jeremy Gardiner, Jan 25 2006
a(n) is the number of solutions of the Diophantine equation 2^m*k + 2^(m-1) + i = n, where m >= 1, k >= 0, 0 <= i < 2^(m-1); a(5) = 2 because only (m, k, i) = (1, 2, 0) [2^1*2 + 2^0 + 0 = 5] and (m, k, i) = (3, 0, 1) [2^3*0 + 2^2 + 1 = 5] are solutions. - Hieronymus Fischer, Jan 31 2006
The first appearance of k, k >= 0, is at a(2^k-1). - Robert G. Wilson v, Jul 27 2006
Sequence is given by T^(infinity)(0) where T is the operator transforming any word w = w(1)w(2)...w(m) into T(w) = w(1)(w(1)+1)w(2)(w(2)+1)...w(m)(w(m)+1). I.e., T(0) = 01, T(01) = 0112, T(0112) = 01121223. - Benoit Cloitre, Mar 04 2009
For n >= 2, the minimal k for which a(k(2^n-1)) is not multiple of n is 2^n + 3. - Vladimir Shevelev, Jun 05 2009
Triangle inequality: a(k+m) <= a(k) + a(m). Equality holds if and only if C(k+m, m) is odd. - Vladimir Shevelev, Jul 19 2009
a(k*m) <= a(k) * a(m). - Robert Israel, Sep 03 2023
The number of occurrences of value k in the first 2^n terms of the sequence is equal to binomial(n, k), and also equal to the sum of the first n - k + 1 terms of column k in the array A071919. Example with k = 2, n = 7: there are 21 = binomial(7,2) = 1 + 2 + 3 + 4 + 5 + 6 2's in a(0) to a(2^7-1). - Brent Spillner (spillner(AT)acm.org), Sep 01 2010, simplified by R. J. Mathar, Jan 13 2017
Let m be the number of parts in the listing of the compositions of n as lists of parts in lexicographic order, a(k) = n - length(composition(k)) for all k < 2^n and all n (see example); A007895 gives the equivalent for compositions into odd parts. - Joerg Arndt, Nov 09 2012
From Daniel Forgues, Mar 13 2015: (Start)
Just tally up row k (binary weight equal k) from 0 to 2^n - 1 to get the binomial coefficient C(n,k). (See A007318.)
0 1 3 7 15
0: O | . | . . | . . . . | . . . . . . . . |
1: | O | O . | O . . . | O . . . . . . . |
2: | | O | O O . | O O . O . . . |
3: | | | O | O O O . |
4: | | | | O |
Due to its fractal nature, the sequence is quite interesting to listen to.
(End)
The binary weight of n is a particular case of the digit sum (base b) of n. - Daniel Forgues, Mar 13 2015
The mean of the first n terms is 1 less than the mean of [a(n+1),...,a(2n)], which is also the mean of [a(n+2),...,a(2n+1)]. - Christian Perfect, Apr 02 2015
a(n) is also the largest part of the integer partition having viabin number n. The viabin number of an integer partition is defined in the following way. Consider the southeast border of the Ferrers board of the integer partition and consider the binary number obtained by replacing each east step with 1 and each north step, except the last one, with 0. The corresponding decimal form is, by definition, the viabin number of the given integer partition. "Viabin" is coined from "via binary". For example, consider the integer partition [2, 2, 2, 1]. The southeast border of its Ferrers board yields 10100, leading to the viabin number 20. - Emeric Deutsch, Jul 20 2017
a(n) is also known as the population count of the binary representation of n. - Chai Wah Wu, May 19 2020
REFERENCES
Jean-Paul Allouche and Jeffrey Shallit, Automatic Sequences, Cambridge Univ. Press, 2003, p. 119.
Donald E. Knuth, The Art of Computer Programming, vol. 4A, Combinatorial Algorithms, Section 7.1.3, Problem 41, p. 589. - N. J. A. Sloane, Aug 03 2012
Manfred R. Schroeder, Fractals, Chaos, Power Laws. W.H. Freeman, 1991, p. 383.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Franklin T. Adams-Watters, and Frank Ruskey, Generating Functions for the Digital Sum and Other Digit Counting Sequences, JIS, Vol. 12 (2009), Article 09.5.6.
J.-P. Allouche, On an Inequality in a 1970 Paper of R. L. Graham, INTEGERS 21A (2021), #A2.
Jean-Paul Allouche and Jeffrey Shallit, The ring of k-regular sequences, Theoretical Computer Sci., Vol. 98 (1992), pp. 163-197. (PS file on author's web page.)
Jean-Paul Allouche, Jeffrey Shallit and Jonathan Sondow, Summation of Series Defined by Counting Blocks of Digits, arXiv:math/0512399 [math.NT], 2005-2006.
Jean-Paul Allouche, Jeffrey Shallit and Jonathan Sondow, Summation of series defined by counting blocks of digits, J. Number Theory, Vol. 123 (2007), pp. 133-143.
Richard Bellman and Harold N. Shapiro, On a problem in additive number theory, Annals Math., Vol. 49, No. 2 (1948), pp. 333-340. - N. J. A. Sloane, Mar 12 2009
C. Cobeli and A. Zaharescu, A game with divisors and absolute differences of exponents, Journal of Difference Equations and Applications, Vol. 20, #11 (2014) pp. 1489-1501, DOI: 10.1080/10236198.2014.940337. Also available as arXiv:1411.1334 [math.NT], 2014. See delta_n.
Jean Coquet, Power sums of digital sums, J. Number Theory, Vol. 22, No. 2 (1986), pp. 161-176.
F. M. Dekking, The Thue-Morse Sequence in Base 3/2, J. Int. Seq., Vol. 26 (2023), Article 23.2.3.
Karl Dilcher and Larry Ericksen, Hyperbinary expansions and Stern polynomials, Elec. J. Combin, Vol. 22 (2015), #P2.24.
Josef Eschgfäller and Andrea Scarpante, Dichotomic random number generators, arXiv:1603.08500 [math.CO], 2016.
Emmanuel Ferrand, Deformations of the Taylor Formula, Journal of Integer Sequences, Vol. 10 (2007), Article 07.1.7.
Steven R. Finch, Pascal Sebah and Zai-Qiao Bai, Odd Entries in Pascal's Trinomial Triangle, arXiv:0802.2654 [math.NT], 2008.
Philippe Flajolet, Peter Grabner, Peter Kirschenhofer, Helmut Prodinger and Robert F. Tichy, Mellin Transforms And Asymptotics: Digital Sums, Theoret. Computer Sci., Vol. 123, No. 2 (1994), pp. 291-314.
P. J. Grabner, P. Kirschenhofer, H. Prodinger and R. F. Tichy, On the moments of the sum-of-digits function, Applications of Fibonacci numbers, Vol. 5 (St. Andrews, 1992), Kluwer Acad. Publ., Dordrecht, 1993, 263-271.
Ronald L. Graham, On primitive graphs and optimal vertex assignments, Internat. Conf. Combin. Math. (New York, 1970), Annals of the NY Academy of Sciences, Vol. 175, 1970, pp. 170-186.
Khodabakhsh Hessami Pilehrood and Tatiana Hessami Pilehrood, Vacca-Type Series for Values of the Generalized Euler Constant Function and its Derivative, J. Integer Sequences, Vol. 13 (2010), Article 10.7.3.
Kathy Q. Ji and Herbert S. Wilf, Extreme Palindromes, arXiv:math/0611465 [math.CO], 2006.
Guy Louchard and Helmut Prodinger, The Largest Missing Value in a Composition of an Integer and Some Allouche-Shallit-Type Identities, J. Int. Seq., Vol. 16 (2013), Article 13.2.2.
J.-L. Mauclaire and Leo Murata, On q-additive functions, I, Proc. Japan Acad. Ser. A Math. Sci., Vol. 59, No. 6 (1983), pp. 274-276.
J.-L. Mauclaire and Leo Murata, On q-additive functions, II, Proc. Japan Acad. Ser. A Math. Sci., Vol. 59, No. 9 (1983), pp. 441-444.
M. D. McIlroy, The number of 1's in binary integers: bounds and extremal properties, SIAM J. Comput., Vol. 3 (1974), pp. 255-261.
Sam Northshield, Stern's Diatomic Sequence 0,1,1,2,1,3,2,3,1,4,..., Amer. Math. Month., Vol. 117, No. 7 (2010), pp. 581-598.
Theophanes E. Raptis, Finite Information Numbers through the Inductive Combinatorial Hierarchy, arXiv:1805.06301 [physics.gen-ph], 2018.
Carlo Sanna, On Arithmetic Progressions of Integers with a Distinct Sum of Digits, Journal of Integer Sequences, Vol. 15 (2012), Article 12.8.1. - N. J. A. Sloane, Dec 29 2012
Nanci Smith, Problem B-82, Fib. Quart., Vol. 4, No. 4 (1966), pp. 374-375.
Jonathan Sondow, New Vacca-type rational series for Euler's constant and its "alternating" analog ln 4/Pi, arXiv:math/0508042 [math.NT] 2005; Additive Number Theory, D. and G. Chudnovsky, eds., Springer, 2010, pp. 331-340.
Ralf Stephan, Divide-and-conquer generating functions. I. Elementary sequences, arXiv:math/0307027 [math.CO], 2003.
Kenneth B. Stolarsky, Power and exponential sums of digital sums related to binomial coefficient parity, SIAM J. Appl. Math., Vol. 32 (1977), pp. 717-730. See B(n). - N. J. A. Sloane, Apr 05 2014
J. R. Trollope, An explicit expression for binary digital sums, Math. Mag., Vol. 41, No. 1 (1968), pp. 21-25.
Eric Weisstein's World of Mathematics, Binary, Digit Count, Stolarsky-Harborth Constant, Digit Sum.
Wikipedia, Hamming weight.
Wolfram Research, Numbers in Pascal's triangle.
FORMULA
a(0) = 0, a(2*n) = a(n), a(2*n+1) = a(n) + 1.
a(0) = 0, a(2^i) = 1; otherwise if n = 2^i + j with 0 < j < 2^i, a(n) = a(j) + 1.
G.f.: Product_{k >= 0} (1 + y*x^(2^k)) = Sum_{n >= 0} y^a(n)*x^n. - N. J. A. Sloane, Jun 04 2009
a(n) = a(n-1) + 1 - A007814(n) = log_2(A001316(n)) = 2n - A005187(n) = A070939(n) - A023416(n). - Henry Bottomley, Apr 04 2001; corrected by Ralf Stephan, Apr 15 2002
a(n) = log_2(A000984(n)/A001790(n)). - Benoit Cloitre, Oct 02 2002
For n > 0, a(n) = n - Sum_{k=1..n} A007814(k). - Benoit Cloitre, Oct 19 2002
a(n) = n - Sum_{k>=1} floor(n/2^k) = n - A011371(n). - Benoit Cloitre, Dec 19 2002
G.f.: (1/(1-x)) * Sum_{k>=0} x^(2^k)/(1+x^(2^k)). - Ralf Stephan, Apr 19 2003
a(0) = 0, a(n) = a(n - 2^floor(log_2(n))) + 1. Examples: a(6) = a(6 - 2^2) + 1 = a(2) + 1 = a(2 - 2^1) + 1 + 1 = a(0) + 2 = 2; a(101) = a(101 - 2^6) + 1 = a(37) + 1 = a(37 - 2^5) + 2 = a(5 - 2^2) + 3 = a(1 - 2^0) + 4 = a(0) + 4 = 4; a(6275) = a(6275 - 2^12) + 1 = a(2179 - 2^11) + 2 = a(131 - 2^7) + 3 = a(3 - 2^1) + 4 = a(1 - 2^0) + 5 = 5; a(4129) = a(4129 - 2^12) + 1 = a(33 - 2^5) + 2 = a(1 - 2^0) + 3 = 3. - Hieronymus Fischer, Jan 22 2006
A fixed point of the mapping 0 -> 01, 1 -> 12, 2 -> 23, 3 -> 34, 4 -> 45, ... With f(i) = floor(n/2^i), a(n) is the number of odd numbers in the sequence f(0), f(1), f(2), f(3), f(4), f(5), ... - Philippe Deléham, Jan 04 2004
When read mod 2 gives the Morse-Thue sequence A010060.
Let floor_pow4(n) denote n rounded down to the next power of four, floor_pow4(n) = 4 ^ floor(log4 n). Then a(0) = 0, a(1) = 1, a(2) = 1, a(3) = 2, a(n) = a(floor(n / floor_pow4(n))) + a(n % floor_pow4(n)). - Stephen K. Touset (stephen(AT)touset.org), Apr 04 2007
a(n) = n - Sum_{k=2..n} Sum_{j|n, j >= 2} (floor(log_2(j)) - floor(log_2(j-1))). - Hieronymus Fischer, Jun 18 2007
a(n) = A138530(n, 2) for n > 1. - Reinhard Zumkeller, Mar 26 2008
a(A077436(n)) = A159918(A077436(n)); a(A000290(n)) = A159918(n). - Reinhard Zumkeller, Apr 25 2009
a(n) = A063787(n) - A007814(n). - Gary W. Adamson, Jun 04 2009
a(n) = A007814(C(2n, n)) = 1 + A007814(C(2n-1, n)). - Vladimir Shevelev, Jul 20 2009
For odd m >= 1, a((4^m-1)/3) = a((2^m+1)/3) + (m-1)/2 (mod 2). - Vladimir Shevelev, Sep 03 2010
a(n) - a(n-1) = { 1 - a(n-1) if and only if A007814(n) = a(n-1), 1 if and only if A007814(n) = 0, -1 for all other A007814(n) }. - Brent Spillner (spillner(AT)acm.org), Sep 01 2010
a(A001317(n)) = 2^a(n). - Vladimir Shevelev, Oct 25 2010
a(n) = A139351(n) + A139352(n) = Sum_k {A030308(n, k)}. - Philippe Deléham, Oct 14 2011
From Hieronymus Fischer, Jun 10 2012: (Start)
a(n) = Sum_{j = 1..m+1} (floor(n/2^j + 1/2) - floor(n/2^j)), where m = floor(log_2(n)).
General formulas for the number of digits >= d in the base p representation of n, where 1 <= d < p: a(n) = Sum_{j = 1..m+1} (floor(n/p^j + (p-d)/p) - floor(n/p^j)), where m=floor(log_p(n)); g.f.: g(x) = (1/(1-x))*Sum_{j>=0} (x^(d*p^j) - x^(p*p^j))/(1-x^(p*p^j)). (End)
a(n) = A213629(n, 1) for n > 0. - Reinhard Zumkeller, Jul 04 2012
a(n) = A240857(n,n). - Reinhard Zumkeller, Apr 14 2014
a(n) = log_2(C(2*n,n) - (C(2*n,n) AND C(2*n,n)-1)). - Gary Detlefs, Jul 10 2014
Sum_{n >= 1} a(n)/2n(2n+1) = (gamma + log(4/Pi))/2 = A344716, where gamma is Euler's constant A001620; see Sondow 2005, 2010 and Allouche, Shallit, Sondow 2007. - Jonathan Sondow, Mar 21 2015
For any integer base b >= 2, the sum of digits s_b(n) of expansion base b of n is the solution of this recurrence relation: s_b(n) = 0 if n = 0 and s_b(n) = s_b(floor(n/b)) + (n mod b). Thus, a(n) satisfies: a(n) = 0 if n = 0 and a(n) = a(floor(n/2)) + (n mod 2). This easily yields a(n) = Sum_{i = 0..floor(log_2(n))} (floor(n/2^i) mod 2). From that one can compute a(n) = n - Sum_{i = 1..floor(log_2(n))} floor(n/2^i). - Marek A. Suchenek, Mar 31 2016
Sum_{k>=1} a(k)/2^k = 2 * Sum_{k >= 0} 1/(2^(2^k)+1) = 2 * A051158. - Amiram Eldar, May 15 2020
Sum_{k>=1} a(k)/(k*(k+1)) = A016627 = log(4). - Bernard Schott, Sep 16 2020
a(m*(2^n-1)) >= n. Equality holds when 2^n-1 >= A000265(m), but also in some other cases, e.g., a(11*(2^2-1)) = 2 and a(19*(2^3-1)) = 3. - Pontus von Brömssen, Dec 13 2020
G.f.: A(x) satisfies A(x) = (1+x)*A(x^2) + x/(1-x^2). - Akshat Kumar, Nov 04 2023
EXAMPLE
Using the formula a(n) = a(floor(n / floor_pow4(n))) + a(n mod floor_pow4(n)):
a(4) = a(1) + a(0) = 1,
a(8) = a(2) + a(0) = 1,
a(13) = a(3) + a(1) = 2 + 1 = 3,
a(23) = a(1) + a(7) = 1 + a(1) + a(3) = 1 + 1 + 2 = 4.
Gary W. Adamson points out (Jun 03 2009) that this can be written as a triangle:
0,
1,
1,2,
1,2,2,3,
1,2,2,3,2,3,3,4,
1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,
1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
1,2,2,3,2,3,...
where the rows converge to A063787.
From Joerg Arndt, Nov 09 2012: (Start)
Connection to the compositions of n as lists of parts (see comment):
[ #]: a(n) composition
[ 0]: [0] 1 1 1 1 1
[ 1]: [1] 1 1 1 2
[ 2]: [1] 1 1 2 1
[ 3]: [2] 1 1 3
[ 4]: [1] 1 2 1 1
[ 5]: [2] 1 2 2
[ 6]: [2] 1 3 1
[ 7]: [3] 1 4
[ 8]: [1] 2 1 1 1
[ 9]: [2] 2 1 2
[10]: [2] 2 2 1
[11]: [3] 2 3
[12]: [2] 3 1 1
[13]: [3] 3 2
[14]: [3] 4 1
[15]: [4] 5
(End)
MAPLE
A000120 := proc(n) local w, m, i; w := 0; m := n; while m > 0 do i := m mod 2; w := w+i; m := (m-i)/2; od; w; end: wt := A000120;
A000120 := n -> add(i, i=convert(n, base, 2)): # Peter Luschny, Feb 03 2011
with(Bits): p:=n->ilog2(n-And(n, n-1)): seq(p(binomial(2*n, n)), n=0..200) # Gary Detlefs, Jan 27 2019
MATHEMATICA
Table[DigitCount[n, 2, 1], {n, 0, 105}]
Nest[Flatten[# /. # -> {#, # + 1}] &, {0}, 7] (* Robert G. Wilson v, Sep 27 2011 *)
Table[Plus @@ IntegerDigits[n, 2], {n, 0, 104}]
Nest[Join[#, # + 1] &, {0}, 7] (* IWABUCHI Yu(u)ki, Jul 19 2012 *)
Log[2, Nest[Join[#, 2#] &, {1}, 14]] (* gives 2^14 term, Carlos Alves, Mar 30 2014 *)
PROG
(PARI) {a(n) = if( n<0, 0, 2*n - valuation((2*n)!, 2))};
(PARI) {a(n) = if( n<0, 0, subst(Pol(binary(n)), x , 1))};
(PARI) {a(n) = if( n<1, 0, a(n\2) + n%2)}; /* Michael Somos, Mar 06 2004 */
(PARI) a(n)=my(v=binary(n)); sum(i=1, #v, v[i]) \\ Charles R Greathouse IV, Jun 24 2011
(PARI) a(n)=norml2(binary(n)) \\ better use {A000120=hammingweight}. - M. F. Hasler, Oct 09 2012, edited Feb 27 2020
(PARI) a(n)=hammingweight(n) \\ Michel Marcus, Oct 19 2013
(Common Lisp) (defun floor-to-power (n pow) (declare (fixnum pow)) (expt pow (floor (log n pow)))) (defun enabled-bits (n) (if (< n 4) (n-th n (list 0 1 1 2)) (+ (enabled-bits (floor (/ n (floor-to-power n 4)))) (enabled-bits (mod n (floor-to-power n 4)))))) ; Stephen K. Touset (stephen(AT)touset.org), Apr 04 2007
(Fortran) c See link in A139351
(Haskell)
import Data.Bits (Bits, popCount)
a000120 :: (Integral t, Bits t) => t -> Int
a000120 = popCount
a000120_list = 0 : c [1] where c (x:xs) = x : c (xs ++ [x, x+1])
-- Reinhard Zumkeller, Aug 26 2013, Feb 19 2012, Jun 16 2011, Mar 07 2011
(Haskell)
a000120 = concat r
where r = [0] : (map.map) (+1) (scanl1 (++) r)
-- Luke Palmer, Feb 16 2014
(SageMath)
def A000120(n):
if n <= 1: return Integer(n)
return A000120(n//2) + n%2
[A000120(n) for n in range(105)] # Peter Luschny, Nov 19 2012
(SageMath) def A000120(n) : return sum(n.digits(2)) # Eric M. Schmidt, Apr 26 2013
(Python) def A000120(n): return bin(n).count('1') # Chai Wah Wu, Sep 03 2014
(Python)
import numpy as np
A000120 = np.array([0], dtype="uint8")
for bitrange in range(25): A000120 = np.append(A000120, np.add(A000120, 1))
print([A000120[n] for n in range(0, 105)]) # Karl-Heinz Hofmann, Nov 07 2022
(Python) def A000120(n): return n.bit_count() # Requires Python 3.10 or higher. - Pontus von Brömssen, Nov 08 2022
(Python) # Also see links.
(Scala) (0 to 127).map(Integer.bitCount(_)) // Alonso del Arte, Mar 05 2019
(Magma) [Multiplicity(Intseq(n, 2), 1): n in [0..104]]; // Marius A. Burtea, Jan 22 2020
(Magma) [&+Intseq(n, 2):n in [0..104]]; // Marius A. Burtea, Jan 22 2020
CROSSREFS
The basic sequences concerning the binary expansion of n are this one, A000788, A000069, A001969, A023416, A059015, A007088.
Partial sums see A000788. For run lengths see A131534. See also A001792, A010062.
Number of 0's in n: A023416 and A080791.
a(n) = n - A011371(n).
Sum of digits of n written in bases 2-16: this sequence, A053735, A053737, A053824, A053827, A053828, A053829, A053830, A007953, A053831, A053832, A053833, A053834, A053835, A053836.
This is Guy Steele's sequence GS(3, 4) (see A135416).
Cf. A230952 (boustrophedon transform).
Cf. A070939 (length of binary representation of n).
KEYWORD
nonn,easy,core,nice,hear,look,base
STATUS
approved
Oblong (or promic, pronic, or heteromecic) numbers: a(n) = n*(n+1).
(Formerly M1581 N0616)
+10
791
0, 2, 6, 12, 20, 30, 42, 56, 72, 90, 110, 132, 156, 182, 210, 240, 272, 306, 342, 380, 420, 462, 506, 552, 600, 650, 702, 756, 812, 870, 930, 992, 1056, 1122, 1190, 1260, 1332, 1406, 1482, 1560, 1640, 1722, 1806, 1892, 1980, 2070, 2162, 2256, 2352, 2450, 2550
OFFSET
0,2
COMMENTS
4*a(n) + 1 are the odd squares A016754(n).
The word "pronic" (used by Dickson) is incorrect. - Michael Somos
According to the 2nd edition of Webster, the correct word is "promic". - R. K. Guy
a(n) is the number of minimal vectors in the root lattice A_n (see Conway and Sloane, p. 109).
Let M_n denote the n X n matrix M_n(i, j) = (i + j); then the characteristic polynomial of M_n is x^(n-2) * (x^2 - a(n)*x - A002415(n)). - Benoit Cloitre, Nov 09 2002
The greatest LCM of all pairs (j, k) for j < k <= n for n > 1. - Robert G. Wilson v, Jun 19 2004
First differences are a(n+1) - a(n) = 2*n + 2 = 2, 4, 6, ... (while first differences of the squares are (n+1)^2 - n^2 = 2*n + 1 = 1, 3, 5, ...). - Alexandre Wajnberg, Dec 29 2005
25 appended to these numbers corresponds to squares of numbers ending in 5 (i.e., to squares of A017329). - Lekraj Beedassy, Mar 24 2006
A rapid (mental) multiplication/factorization technique -- a generalization of Lekraj Beedassy's comment: For all bases b >= 2 and positive integers n, c, d, k with c + d = b^k, we have (n*b^k + c)*(n*b^k + d) = a(n)*b^(2*k) + c*d. Thus the last 2*k base-b digits of the product are exactly those of c*d -- including leading 0(s) as necessary -- with the preceding base-b digit(s) the same as a(n)'s. Examples: In decimal, 113*117 = 13221 (as n = 11, b = 10 = 3 + 7, k = 1, 3*7 = 21, and a(11) = 132); in octal, 61*67 = 5207 (52 is a(6) in octal). In particular, for even b = 2*m (m > 0) and c = d = m, such a product is a square of this type. Decimal factoring: 5609 is immediately seen to be 71*79. Likewise, 120099 = 301*399 (k = 2 here) and 99990000001996 = 9999002*9999998 (k = 3). - Rick L. Shepherd, Jul 24 2021
Number of circular binary words of length n + 1 having exactly one occurrence of 01. Example: a(2) = 6 because we have 001, 010, 011, 100, 101 and 110. Column 1 of A119462. - Emeric Deutsch, May 21 2006
The sequence of iterated square roots sqrt(N + sqrt(N + ...)) has for N = 1, 2, ... the limit (1 + sqrt(1 + 4*N))/2. For N = a(n) this limit is n + 1, n = 1, 2, .... For all other numbers N, N >= 1, this limit is not a natural number. Examples: n = 1, a(1) = 2: sqrt(2 + sqrt(2 + ...)) = 1 + 1 = 2; n = 2, a(2) = 6: sqrt(6 + sqrt(6 + ...)) = 1 + 2 = 3. - Wolfdieter Lang, May 05 2006
Nonsquare integers m divisible by ceiling(sqrt(m)), except for m = 0. - Max Alekseyev, Nov 27 2006
The number of off-diagonal elements of an (n + 1) X (n + 1) matrix. - Artur Jasinski, Jan 11 2007
a(n) is equal to the number of functions f:{1, 2} -> {1, 2, ..., n + 1} such that for a fixed x in {1, 2} and a fixed y in {1, 2, ..., n + 1} we have f(x) <> y. - Aleksandar M. Janjic and Milan Janjic, Mar 13 2007
Numbers m >= 0 such that round(sqrt(m+1)) - round(sqrt(m)) = 1. - Hieronymus Fischer, Aug 06 2007
Numbers m >= 0 such that ceiling(2*sqrt(m+1)) - 1 = 1 + floor(2*sqrt(m)). - Hieronymus Fischer, Aug 06 2007
Numbers m >= 0 such that fract(sqrt(m+1)) > 1/2 and fract(sqrt(m)) < 1/2 where fract(x) is the fractional part (fract(x) = x - floor(x), x >= 0). - Hieronymus Fischer, Aug 06 2007
X values of solutions to the equation 4*X^3 + X^2 = Y^2. To find Y values: b(n) = n(n+1)(2n+1). - Mohamed Bouhamida, Nov 06 2007
Nonvanishing diagonal of A132792, the infinitesimal Lah matrix, so "generalized factorials" composed of a(n) are given by the elements of the Lah matrix, unsigned A111596, e.g., a(1)*a(2)*a(3) / 3! = -A111596(4,1) = 24. - Tom Copeland, Nov 20 2007
If Y is a 2-subset of an n-set X then, for n >= 2, a(n-2) is the number of 2-subsets and 3-subsets of X having exactly one element in common with Y. - Milan Janjic, Dec 28 2007
a(n) coincides with the vertex of a parabola of even width in the Redheffer matrix, directed toward zero. An integer p is prime if and only if for all integer k, the parabola y = kx - x^2 has no integer solution with 1 < x < k when y = p; a(n) corresponds to odd k. - Reikku Kulon, Nov 30 2008
The third differences of certain values of the hypergeometric function 3F2 lead to the squares of the oblong numbers i.e., 3F2([1, n + 1, n + 1], [n + 2, n + 2], z = 1) - 3*3F2([1, n + 2, n + 2], [n + 3, n + 3], z = 1) + 3*3F2([1, n + 3, n + 3], [n + 4, n + 4], z = 1) - 3F2([1, n + 4, n + 4], [n + 5, n + 5], z = 1) = (1/((n+2)*(n+3)))^2 for n = -1, 0, 1, 2, ... . See also A162990. - Johannes W. Meijer, Jul 21 2009
Generalized factorials, [a.(n!)] = a(n)*a(n-1)*...*a(0) = A010790(n), with a(0) = 1 are related to A001263. - Tom Copeland, Sep 21 2011
For n > 1, a(n) is the number of functions f:{1, 2} -> {1, ..., n + 2} where f(1) > 1 and f(2) > 2. Note that there are n + 1 possible values for f(1) and n possible values for f(2). For example, a(3) = 12 since there are 12 functions f from {1, 2} to {1, 2, 3, 4, 5} with f(1) > 1 and f(2) > 2. - Dennis P. Walsh, Dec 24 2011
a(n) gives the number of (n + 1) X (n + 1) symmetric (0, 1)-matrices containing two ones (see [Cameron]). - L. Edson Jeffery, Feb 18 2012
a(n) is the number of positions of a domino in a rectangled triangular board with both legs equal to n + 1. - César Eliud Lozada, Sep 26 2012
a(n) is the number of ordered pairs (x, y) in [n+2] X [n+2] with |x-y| > 1. - Dennis P. Walsh, Nov 27 2012
a(n) is the number of injective functions from {1, 2} into {1, 2, ..., n + 1}. - Dennis P. Walsh, Nov 27 2012
a(n) is the sum of the positive differences of the partition parts of 2n + 2 into exactly two parts (see example). - Wesley Ivan Hurt, Jun 02 2013
a(n)/a(n-1) is asymptotic to e^(2/n). - Richard R. Forberg, Jun 22 2013
Number of positive roots in the root system of type D_{n + 1} (for n > 2). - Tom Edgar, Nov 05 2013
Number of roots in the root system of type A_n (for n > 0). - Tom Edgar, Nov 05 2013
From Felix P. Muga II, Mar 18 2014: (Start)
a(m), for m >= 1, are the only positive integer values t for which the Binet-de Moivre formula for the recurrence b(n) = b(n-1) + t*b(n-2) with b(0) = 0 and b(1) = 1 has a root of a square. PROOF (as suggested by Wolfdieter Lang, Mar 26 2014): The sqrt(1 + 4t) appearing in the zeros r1 and r2 of the characteristic equation is (a positive) integer for positive integer t precisely if 4t + 1 = (2m + 1)^2, that is t = a(m), m >= 1. Thus, the characteristic roots are integers: r1 = m + 1 and r2 = -m.
Let m > 1 be an integer. If b(n) = b(n-1) + a(m)*b(n-2), n >= 2, b(0) = 0, b(1) = 1, then lim_{n->oo} b(n+1)/b(n) = m + 1. (End)
Cf. A130534 for relations to colored forests, disposition of flags on flagpoles, and colorings of the vertices (chromatic polynomial) of the complete graphs (here simply K_2). - Tom Copeland, Apr 05 2014
The set of integers k for which k + sqrt(k + sqrt(k + sqrt(k + sqrt(k + ...) ... is an integer. - Leslie Koller, Apr 11 2014
a(n-1) is the largest number k such that (n*k)/(n+k) is an integer. - Derek Orr, May 22 2014
Number of ways to place a domino and a singleton on a strip of length n - 2. - Ralf Stephan, Jun 09 2014
With offset 1, this appears to give the maximal number of crossings between n nonconcentric circles of equal radius. - Felix Fröhlich, Jul 14 2014
For n > 1, the harmonic mean of the n values a(1) to a(n) is n + 1. The lowest infinite sequence of increasing positive integers whose cumulative harmonic mean is integral. - Ian Duff, Feb 01 2015
a(n) is the maximum number of queens of one color that can coexist without attacking one queen of the opponent's color on an (n+2) X (n+2) chessboard. The lone queen can be placed in any position on the perimeter of the board. - Bob Selcoe, Feb 07 2015
With a(0) = 1, a(n-1) is the smallest positive number not in the sequence such that Sum_{i = 1..n} 1/a(i-1) has a denominator equal to n. - Derek Orr, Jun 17 2015
The positive members of this sequence are a proper subsequence of the so-called 1-happy couple products A007969. See the W. Lang link there, eq. (4), with Y_0 = 1, with a table at the end. - Wolfdieter Lang, Sep 19 2015
For n > 0, a(n) is the reciprocal of the area bounded above by y = x^(n-1) and below by y = x^n for x in the interval [0, 1]. Summing all such areas visually demonstrates the formula below giving Sum_{n >= 1} 1/a(n) = 1. - Rick L. Shepherd, Oct 26 2015
It appears that, except for a(0) = 0, this is the set of positive integers n such that x*floor(x) = n has no solution. (For example, to get 3, take x = -3/2.) - Melvin Peralta, Apr 14 2016
If two independent real random variables, x and y, are distributed according to the same exponential distribution: pdf(x) = lambda * exp(-lambda * x), lambda > 0, then the probability that n - 1 <= x/y < n is given by 1/a(n). - Andres Cicuttin, Dec 03 2016
a(n) is equal to the sum of all possible differences between n different pairs of consecutive odd numbers (see example). - Miquel Cerda, Dec 04 2016
a(n+1) is the dimension of the space of vector fields in the plane with polynomial coefficients up to order n. - Martin Licht, Dec 04 2016
It appears that a(n) + 3 is the area of the largest possible pond in a square (A268311). - Craig Knecht, May 04 2017
Also the number of 3-cycles in the (n+3)-triangular honeycomb acute knight graph. - Eric W. Weisstein, Jul 27 2017
Also the Wiener index of the (n+2)-wheel graph. - Eric W. Weisstein, Sep 08 2017
The left edge of a Floyd's triangle that consists of even numbers: 0; 2, 4; 6, 8, 10; 12, 14, 16, 18; 20, 22, 24, 26, 28; ... giving 0, 2, 6, 12, 20, ... The right edge generates A028552. - Waldemar Puszkarz, Feb 02 2018
a(n+1) is the order of rowmotion on a poset obtained by adjoining a unique minimal (or maximal) element to a disjoint union of at least two chains of n elements. - Nick Mayers, Jun 01 2018
From Juhani Heino, Feb 05 2019: (Start)
For n > 0, 1/a(n) = n/(n+1) - (n-1)/n.
For example, 1/6 = 2/3 - 1/2; 1/12 = 3/4 - 2/3.
Corollary of this:
Take 1/2 pill.
Next day, take 1/6 pill. 1/2 + 1/6 = 2/3, so your daily average is 1/3.
Next day, take 1/12 pill. 2/3 + 1/12 = 3/4, so your daily average is 1/4.
And so on. (End)
From Bernard Schott, May 22 2020: (Start)
For an oblong number m >= 6 there exists a Euclidean division m = d*q + r with q < r < d which are in geometric progression, in this order, with a common integer ratio b. For b >= 2 and q >= 1, the Euclidean division is m = qb*(qb+1) = qb^2 * q + qb where (q, qb, qb^2) are in geometric progression.
Some examples with distinct ratios and quotients:
6 | 4 30 | 25 42 | 18
----- ----- -----
2 | 1 , 5 | 1 , 6 | 2 ,
and also:
42 | 12 420 | 100
----- -----
6 | 3 , 20 | 4 .
Some oblong numbers also satisfy a Euclidean division m = d*q + r with q < r < d that are in geometric progression in this order but with a common noninteger ratio b > 1 (see A335064). (End)
For n >= 1, the continued fraction expansion of sqrt(a(n)) is [n; {2, 2n}]. For n=1, this collapses to [1; {2}]. - Magus K. Chu, Sep 09 2022
a(n-2) is the maximum irregularity over all trees with n vertices. The extremal graphs are stars. (The irregularity of a graph is the sum of the differences between the degrees over all edges of the graph.) - Allan Bickle, May 29 2023
For n > 0, number of diagonals in a regular 2*(n+1)-gon that are not parallel to any edge (cf. A367204). - Paolo Xausa, Mar 30 2024
a(n-1) is the maximum Zagreb index over all trees with n vertices. The extremal graphs are stars. (The Zagreb index of a graph is the sum of the squares of the degrees over all vertices of the graph.) - Allan Bickle, Apr 11 2024
For n >= 1, a(n) is the determinant of the distance matrix of a cycle graph on 2*n + 1 vertices (if the length of the cycle is even such a determinant is zero). - Miquel A. Fiol, Aug 20 2024
For n > 1, the continued fraction expansion of sqrt(16*a(n)) is [2n+1; {1, 2n-1, 1, 8n+2}]. - Magus K. Chu, Nov 20 2024
REFERENCES
W. W. Berman and D. E. Smith, A Brief History of Mathematics, 1910, Open Court, page 67.
J. H. Conway and R. K. Guy, The Book of Numbers, 1996, p. 34.
J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag.
L. E. Dickson, History of the Theory of Numbers, Vol. 1: Divisibility and Primality. New York: Chelsea, p. 357, 1952.
L. E. Dickson, History of the Theory of Numbers, Vol. 2: Diophantine Analysis. New York: Chelsea, pp. 6, 232-233, 350 and 407, 1952.
H. Eves, An Introduction to the History of Mathematics, revised, Holt, Rinehart and Winston, 1964, page 72.
Nicomachus of Gerasa, Introduction to Arithmetic, translation by Martin Luther D'Ooge, Ann Arbor, University of Michigan Press, 1938, p. 254.
Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §8.6 Figurate Numbers, p. 291.
Granino A. Korn and Theresa M. Korn, Mathematical Handbook for Scientists and Engineers, McGraw-Hill Book Company, New York (1968), pp. 980-981.
C. S. Ogilvy and J. T. Anderson, Excursions in Number Theory, Oxford University Press, 1966, pp. 61-62.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
F. J. Swetz, From Five Fingers to Infinity, Open Court, 1994, p. 219.
LINKS
D. Applegate, M. LeBrun and N. J. A. Sloane, Dismal Arithmetic, J. Int. Seq. 14 (2011) # 11.9.8.
R. Bapat, S. J. Kirkland, and M. Neumann, On distance matrices and Laplacians, Linear Algebra Appl. 401 (2005), 193-209.
Allan Bickle and Zhongyuan Che, Irregularities of Maximal k-degenerate Graphs, Discrete Applied Math. 331 (2023) 70-87.
Allan Bickle, A Survey of Maximal k-degenerate Graphs and k-Trees, Theory and Applications of Graphs 0 1 (2024) Article 5.
Allan Bickle, Zagreb Indices of Maximal k-degenerate Graphs, Australas. J. Combin. 89 1 (2024) 167-178.
Alin Bostan, Frédéric Chyzak, and Vincent Pilaud, Refined product formulas for Tamari intervals, arXiv:2303.10986 [math.CO], 2023.
P. Cameron, T. Prellberg and D. Stark, Asymptotics for incidence matrix classes, Electron. J. Combin. 13 (2006), #R85, p. 11.
J. Estes and B. Wei, Sharp bounds of the Zagreb indices of k-trees, J Comb Optim 27 (2014), 271-291.
I. Gutman and K. Das, The first Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem. 50 (2004), 83-92.
L. B. W. Jolley, Summation of Series, Dover, 1961.
Refik Keskin and Olcay Karaatli, Some New Properties of Balancing Numbers and Square Triangular Numbers, Journal of Integer Sequences, Vol. 15 (2012), Article #12.1.4.
Feihu Liu, Guoce Xin, and Chen Zhang, Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS, arXiv:2412.18744 [math.CO], 2024. See p. 27.
Enrique Navarrete and Daniel Orellana, Finding Prime Numbers as Fixed Points of Sequences, arXiv:1907.10023 [math.NT], 2019.
László Németh, The trinomial transform triangle, J. Int. Seqs., Vol. 21 (2018), Article #18.7.3. Also arXiv:1807.07109 [math.NT], 2018.
Lee Melvin Peralta, Solutions to the Equation [x]x = n, The Mathematics Teacher, Vol. 111, No. 2 (October 2017), pp. 150-154.
Aleksandar Petojević, A Note about the Pochhammer Symbol, Mathematica Moravica, Vol. 12-1 (2008), 37-42.
A. Petojevic and N. Dapic, The vAm(a,b,c;z) function, Preprint 2013.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
John D. Roth, David A. Garren, and R. Clark Robertson, Integer Carrier Frequency Offset Estimation in OFDM with Zadoff-Chu Sequences, IEEE Int'l Conference on Acoustics, Speech and Signal Processing (ICASSP 2021) 4850-4854.
Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014-2015.
Michelle Rudolph-Lilith, On the Product Representation of Number Sequences, with Application to the Fibonacci Family, arXiv preprint arXiv:1508.07894 [math.NT], 2015.
Amelia Carolina Sparavigna, Groupoids of OEIS A002378 and A016754 Numbers (oblong and odd square numbers), Politecnico di Torino (Italy, 2019).
J. Striker and N. Williams, Promotion and Rowmotion , arXiv preprint arXiv:1108.1172 [math.CO], 2011-2012.
D. Suprijanto and Rusliansyah, Observation on Sums of Powers of Integers Divisible by Four, Applied Mathematical Sciences, Vol. 8, 2014, no. 45, 2219 - 2226.
R. Tijdeman, Some applications of Diophantine approximation, pp. 261-284 of Surveys in Number Theory (Urbana, May 21, 2000), ed. M. A. Bennett et al., Peters, 2003.
G. Villemin's Almanach of Numbers, Nombres Proniques.
Eric Weisstein's World of Mathematics, Crown Graph.
Eric Weisstein's World of Mathematics, Graph Cycle.
Eric Weisstein's World of Mathematics, Pronic Number.
Eric Weisstein's World of Mathematics, Leibniz Harmonic Triangle.
Eric Weisstein's World of Mathematics, Wheel Graph.
Eric Weisstein's World of Mathematics, Wiener Index.
Wikipedia, Pronic number.
Wolfram Research, Hypergeometric Function 3F2, The Wolfram Functions site.
FORMULA
G.f.: 2*x/(1-x)^3. - Simon Plouffe in his 1992 dissertation.
a(n) = a(n-1) + 2*n, a(0) = 0.
Sum_{n >= 1} a(n) = n*(n+1)*(n+2)/3 (cf. A007290, partial sums).
Sum_{n >= 1} 1/a(n) = 1. (Cf. Tijdeman)
Sum_{n >= 1} (-1)^(n+1)/a(n) = log(4) - 1 = A016627 - 1 [Jolley eq (235)].
1 = 1/2 + Sum_{n >= 1} 1/(2*a(n)) = 1/2 + 1/4 + 1/12 + 1/24 + 1/40 + 1/60 + ... with partial sums: 1/2, 3/4, 5/6, 7/8, 9/10, 11/12, 13/14, ... - Gary W. Adamson, Jun 16 2003
a(n)*a(n+1) = a(n*(n+2)); e.g., a(3)*a(4) = 12*20 = 240 = a(3*5). - Charlie Marion, Dec 29 2003
Sum_{k = 1..n} 1/a(k) = n/(n+1). - Robert G. Wilson v, Feb 04 2005
a(n) = A046092(n)/2. - Zerinvary Lajos, Jan 08 2006
Log 2 = Sum_{n >= 0} 1/a(2n+1) = 1/2 + 1/12 + 1/30 + 1/56 + 1/90 + ... = (1 - 1/2) + (1/3 - 1/4) + (1/5 - 1/6) + (1/7 - 1/8) + ... = Sum_{n >= 0} (-1)^n/(n+1) = A002162. - Gary W. Adamson, Jun 22 2003
a(n) = A110660(2*n). - N. J. A. Sloane, Sep 21 2005
a(n-1) = n^2 - n = A000290(n) - A000027(n) for n >= 1. a(n) is the inverse (frequency distribution) sequence of A000194(n). - Mohammad K. Azarian, Jul 26 2007
(2, 6, 12, 20, 30, ...) = binomial transform of (2, 4, 2). - Gary W. Adamson, Nov 28 2007
a(n) = 2*Sum_{i=0..n} i = 2*A000217(n). - Artur Jasinski, Jan 09 2007, and Omar E. Pol, May 14 2008
a(n) = A006503(n) - A000292(n). - Reinhard Zumkeller, Sep 24 2008
a(n) = A061037(4*n) = (n+1/2)^2 - 1/4 = ((2n+1)^2 - 1)/4 = (A005408(n)^2 - 1)/4. - Paul Curtz, Oct 03 2008 and Klaus Purath, Jan 13 2022
a(0) = 0, a(n) = a(n-1) + 1 + floor(x), where x is the minimal positive solution to fract(sqrt(a(n-1) + 1 + x)) = 1/2. - Hieronymus Fischer, Dec 31 2008
E.g.f.: (x+2)*x*exp(x). - Geoffrey Critzer, Feb 06 2009
Product_{i >= 2} (1-1/a(i)) = -2*sin(Pi*A001622)/Pi = -2*sin(A094886)/A000796 = 2*A146481. - R. J. Mathar, Mar 12 2009, Mar 15 2009
E.g.f.: ((-x+1)*log(-x+1)+x)/x^2 also Integral_{x = 0..1} ((-x+1)*log(-x+1) + x)/x^2 = zeta(2) - 1. - Stephen Crowley, Jul 11 2009
a(A007018(n)) = A007018(n+1), i.e., A007018(n+1) = A007018(n)-th oblong numbers. - Jaroslav Krizek, Sep 13 2009
a(n) = floor((n + 1/2)^2). a(n) = A035608(n) + A004526(n+1). - Reinhard Zumkeller, Jan 27 2010
a(n) = 2*(2*A006578(n) - A035608(n)). - Reinhard Zumkeller, Feb 07 2010
a(n-1) = floor(n^5/(n^3 + n^2 + 1)). - Gary Detlefs, Feb 11 2010
For n > 1: a(n) = A173333(n+1, n-1). - Reinhard Zumkeller, Feb 19 2010
a(n) = A004202(A000217(n)). - Reinhard Zumkeller, Feb 12 2011
a(n) = A188652(2*n+1) + 1. - Reinhard Zumkeller, Apr 13 2011
For n > 0 a(n) = 1/(Integral_{x=0..Pi/2} 2*(sin(x))^(2*n-1)*(cos(x))^3). - Francesco Daddi, Aug 02 2011
a(n) = A002061(n+1) - 1. - Omar E. Pol, Oct 03 2011
a(0) = 0, a(n) = A005408(A034856(n)) - A005408(n-1). - Ivan N. Ianakiev, Dec 06 2012
a(n) = A005408(A000096(n)) - A005408(n). - Ivan N. Ianakiev, Dec 07 2012
a(n) = A001318(n) + A085787(n). - Omar E. Pol, Jan 11 2013
Sum_{n >= 1} 1/(a(n))^(2s) = Sum_{t = 1..2*s} binomial(4*s - t - 1, 2*s - 1) * ( (1 + (-1)^t)*zeta(t) - 1). See Arxiv:1301.6293. - R. J. Mathar, Feb 03 2013
a(n)^2 + a(n+1)^2 = 2 * a((n+1)^2), for n > 0. - Ivan N. Ianakiev, Apr 08 2013
a(n) = floor(n^2 * e^(1/n)) and a(n-1) = floor(n^2 / e^(1/n)). - Richard R. Forberg, Jun 22 2013
a(n) = 2*C(n+1, 2), for n >= 0. - Felix P. Muga II, Mar 11 2014
A005369(a(n)) = 1. - Reinhard Zumkeller, Jul 05 2014
Binomial transform of [0, 2, 2, 0, 0, 0, ...]. - Alois P. Heinz, Mar 10 2015
a(2n) = A002943(n) for n >= 0, a(2n-1) = A002939(n) for n >= 1. - M. F. Hasler, Oct 11 2015
For n > 0, a(n) = 1/(Integral_{x=0..1} (x^(n-1) - x^n) dx). - Rick L. Shepherd, Oct 26 2015
a(n) = A005902(n) - A007588(n). - Peter M. Chema, Jan 09 2016
For n > 0, a(n) = lim_{m -> oo} (1/m)*1/(Sum_{i=m*n..m*(n+1)} 1/i^2), with error of ~1/m. - Richard R. Forberg, Jul 27 2016
From Ilya Gutkovskiy, Jul 28 2016: (Start)
Dirichlet g.f.: zeta(s-2) + zeta(s-1).
Convolution of nonnegative integers (A001477) and constant sequence (A007395).
Sum_{n >= 0} a(n)/n! = 3*exp(1). (End)
From Charlie Marion, Mar 06 2020: (Start)
a(n)*a(n+2k-1) + (n+k)^2 = ((2n+1)*k + n^2)^2.
a(n)*a(n+2k) + k^2 = ((2n+1)*k + a(n))^2. (End)
Product_{n>=1} (1 + 1/a(n)) = cosh(sqrt(3)*Pi/2)/Pi. - Amiram Eldar, Jan 20 2021
A generalization of the Dec 29 2003 formula, a(n)*a(n+1) = a(n*(n+2)), follows. a(n)*a(n+k) = a(n*(n+k+1)) + (k-1)*n*(n+k+1). - Charlie Marion, Jan 02 2023
EXAMPLE
a(3) = 12, since 2(3)+2 = 8 has 4 partitions with exactly two parts: (7,1), (6,2), (5,3), (4,4). Taking the positive differences of the parts in each partition and adding, we get: 6 + 4 + 2 + 0 = 12. - Wesley Ivan Hurt, Jun 02 2013
G.f. = 2*x + 6*x^2 + 12*x^3 + 20*x^4 + 30*x^5 + 42*x^6 + 56*x^7 + ... - Michael Somos, May 22 2014
From Miquel Cerda, Dec 04 2016: (Start)
a(1) = 2, since 45-43 = 2;
a(2) = 6, since 47-45 = 2 and 47-43 = 4, then 2+4 = 6;
a(3) = 12, since 49-47 = 2, 49-45 = 4, and 49-43 = 6, then 2+4+6 = 12. (End)
MAPLE
A002378 := proc(n)
n*(n+1) ;
end proc:
seq(A002378(n), n=0..100) ;
MATHEMATICA
Table[n(n + 1), {n, 0, 50}] (* Robert G. Wilson v, Jun 19 2004 *)
oblongQ[n_] := IntegerQ @ Sqrt[4 n + 1]; Select[Range[0, 2600], oblongQ] (* Robert G. Wilson v, Sep 29 2011 *)
2 Accumulate[Range[0, 50]] (* Harvey P. Dale, Nov 11 2011 *)
LinearRecurrence[{3, -3, 1}, {2, 6, 12}, {0, 20}] (* Eric W. Weisstein, Jul 27 2017 *)
PROG
(PARI) {a(n) = n*(n+1)};
(PARI) concat(0, Vec(2*x/(1-x)^3 + O(x^100))) \\ Altug Alkan, Oct 26 2015
(PARI) is(n)=my(m=sqrtint(n)); m*(m+1)==n \\ Charles R Greathouse IV, Nov 01 2018
(PARI) is(n)=issquare(4*n+1) \\ Charles R Greathouse IV, Mar 16 2022
(Haskell)
a002378 n = n * (n + 1)
a002378_list = zipWith (*) [0..] [1..]
-- Reinhard Zumkeller, Aug 27 2012, Oct 12 2011
(Magma) [n*(n+1) : n in [0..100]]; // Wesley Ivan Hurt, Oct 26 2015
(Scala) (2 to 100 by 2).scanLeft(0)(_ + _) // Alonso del Arte, Sep 12 2019
(Python)
def a(n): return n*(n+1)
print([a(n) for n in range(51)]) # Michael S. Branicky, Jan 13 2022
CROSSREFS
Partial sums of A005843 (even numbers). Twice triangular numbers (A000217).
1/beta(n, 2) in A061928.
A036689 and A036690 are subsequences. Cf. numbers of the form n*(n*k-k+4)/2 listed in A226488. - Bruno Berselli, Jun 10 2013
Row n=2 of A185651.
Cf. A007745, A169810, A213541, A005369 (characteristic function).
Cf. A281026. - Bruno Berselli, Jan 16 2017
Cf. A045943 (4-cycles in triangular honeycomb acute knight graph), A028896 (5-cycles), A152773 (6-cycles).
Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.
Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, A002943 = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.
Sequences obtained by reading alternate terms on the X and Y axes and the two main diagonals of the square spiral: Starting at 0: A035608, A156859, A002378 = 2*A000217, A137932 = 4*A002620; starting at 1: A317186, A267682, A002061, A080335.
A335064 is a subsequence.
Second column of A003506.
Cf. A002378, A046092, A028896 (irregularities of maximal k-degenerate graphs).
Cf. A347213 (Dgf at s=4).
Cf. A002378, A152811, A371912 (Zagreb indices of maximal k-degenerate graphs).
KEYWORD
nonn,easy,core,nice,changed
EXTENSIONS
Additional comments from Michael Somos
Comment and cross-reference added by Christopher Hunt Gribble, Oct 13 2009
STATUS
approved
Hexagonal numbers: a(n) = n*(2*n-1).
(Formerly M4108 N1705)
+10
450
0, 1, 6, 15, 28, 45, 66, 91, 120, 153, 190, 231, 276, 325, 378, 435, 496, 561, 630, 703, 780, 861, 946, 1035, 1128, 1225, 1326, 1431, 1540, 1653, 1770, 1891, 2016, 2145, 2278, 2415, 2556, 2701, 2850, 3003, 3160, 3321, 3486, 3655, 3828, 4005, 4186, 4371, 4560
OFFSET
0,3
COMMENTS
Number of edges in the join of two complete graphs, each of order n, K_n * K_n. - Roberto E. Martinez II, Jan 07 2002
The power series expansion of the entropy function H(x) = (1+x)log(1+x) + (1-x)log(1-x) has 1/a_i as the coefficient of x^(2i) (the odd terms being zero). - Tommaso Toffoli (tt(AT)bu.edu), May 06 2002
Partial sums of A016813 (4n+1). Also with offset = 0, a(n) = (2n+1)(n+1) = A005408 * A000027 = 2n^2 + 3n + 1, i.e., a(0) = 1. - Jeremy Gardiner, Sep 29 2002
Sequence also gives the greatest semiperimeter of primitive Pythagorean triangles having inradius n-1. Such a triangle has consecutive longer sides, with short leg 2n-1, hypotenuse a(n) - (n-1) = A001844(n), and area (n-1)*a(n) = 6*A000330(n-1). - Lekraj Beedassy, Apr 23 2003
Number of divisors of 12^(n-1), i.e., A000005(A001021(n-1)). - Henry Bottomley, Oct 22 2001
More generally, if p1 and p2 are two arbitrarily chosen distinct primes then a(n) is the number of divisors of (p1^2*p2)^(n-1) or equivalently of any member of A054753^(n-1). - Ant King, Aug 29 2011
Number of standard tableaux of shape (2n-1,1,1) (n>=1). - Emeric Deutsch, May 30 2004
It is well known that for n>0, A014105(n) [0,3,10,21,...] is the first of 2n+1 consecutive integers such that the sum of the squares of the first n+1 such integers is equal to the sum of the squares of the last n; e.g., 10^2 + 11^2 + 12^2 = 13^2 + 14^2.
Less well known is that for n>1, a(n) [0,1,6,15,28,...] is the first of 2n consecutive integers such that sum of the squares of the first n such integers is equal to the sum of the squares of the last n-1 plus n^2; e.g., 15^2 + 16^2 + 17^2 = 19^2 + 20^2 + 3^2. - Charlie Marion, Dec 16 2006
a(n) is also a perfect number A000396 when n is an even superperfect number A061652. - Omar E. Pol, Sep 05 2008
Sequence found by reading the line from 0, in the direction 0, 6, ... and the line from 1, in the direction 1, 15, ..., in the square spiral whose vertices are the generalized hexagonal numbers A000217. - Omar E. Pol, Jan 09 2009
For n>=1, 1/a(n) = Sum_{k=0..2*n-1} ((-1)^(k+1)*binomial(2*n-1,k)*binomial(2*n-1+k,k)*H(k)/(k+1)) with H(k) harmonic number of order k.
The number of possible distinct colorings of any 2 colors chosen from n colors of a square divided into quadrants. - Paul Cleary, Dec 21 2010
Central terms of the triangle in A051173. - Reinhard Zumkeller, Apr 23 2011
For n>0, a(n-1) is the number of triples (w,x,y) with all terms in {0,...,n} and max(|w-x|,|x-y|) = |w-y|. - Clark Kimberling, Jun 12 2012
a(n) is the number of positions of one domino in an even pyramidal board with base 2n. - César Eliud Lozada, Sep 26 2012
Partial sums give A002412. - Omar E. Pol, Jan 12 2013
Let a triangle have T(0,0) = 0 and T(r,c) = |r^2 - c^2|. The sum of the differences of the terms in row(n) and row(n-1) is a(n). - J. M. Bergot, Jun 17 2013
a(n+1) = A128918(2*n+1). - Reinhard Zumkeller, Oct 13 2013
With T_(i+1,i)=a(i+1) and all other elements of the lower triangular matrix T zero, T is the infinitesimal generator for A176230, analogous to A132440 for the Pascal matrix. - Tom Copeland, Dec 11 2013
a(n) is the number of length 2n binary sequences that have exactly two 1's. a(2) = 6 because we have: {0,0,1,1}, {0,1,0,1}, {0,1,1,0}, {1,0,0,1}, {1,0,1,0}, {1,1,0,0}. The ordinary generating function with interpolated zeros is: (x^2 + 3*x^4)/(1-x^2)^3. - Geoffrey Critzer, Jan 02 2014
For n > 0, a(n) is the largest integer k such that k^2 + n^2 is a multiple of k + n. More generally, for m > 0 and n > 0, the largest integer k such that k^(2*m) + n^(2*m) is a multiple of k + n is given by k = 2*n^(2*m) - n. - Derek Orr, Sep 04 2014
Binomial transform of (0, 1, 4, 0, 0, 0, ...) and second partial sum of (0, 1, 4, 4, 4, ...). - Gary W. Adamson, Oct 05 2015
a(n) also gives the dimension of the simple Lie algebras D_n, for n >= 4. - Wolfdieter Lang, Oct 21 2015
For n > 0, a(n) equals the number of compositions of n+11 into n parts avoiding parts 2, 3, 4. - Milan Janjic, Jan 07 2016
Also the number of minimum dominating sets and maximal irredundant sets in the n-cocktail party graph. - Eric W. Weisstein, Jun 29 and Aug 17 2017
As Beedassy's formula shows, this Hexagonal number sequence is the odd bisection of the Triangle number sequence. Both of these sequences are figurative number sequences. For A000384, a(n) can be found by multiplying its triangle number by its hexagonal number. For example let's use the number 153. 153 is said to be the 17th triangle number but is also said to be the 9th hexagonal number. Triangle(17) Hexagonal(9). 17*9=153. Because the Hexagonal number sequence is a subset of the Triangle number sequence, the Hexagonal number sequence will always have both a triangle number and a hexagonal number. n* (2*n-1) because (2*n-1) renders the triangle number. - Bruce J. Nicholson, Nov 05 2017
Also numbers k with the property that in the symmetric representation of sigma(k) the smallest Dyck path has a central valley and the largest Dyck path has a central peak, n >= 1. Thus all hexagonal numbers > 0 have middle divisors. (Cf. A237593.) - Omar E. Pol, Aug 28 2018
k^a(n-1) mod n = 1 for prime n and k=2..n-1. - Joseph M. Shunia, Feb 10 2019
Consider all Pythagorean triples (X, Y, Z=Y+1) ordered by increasing Z: a(n+1) gives the semiperimeter of related triangles; A005408, A046092 and A001844 give the X, Y and Z values. - Ralf Steiner, Feb 25 2020
See A002939(n) = 2*a(n) for the corresponding perimeters. - M. F. Hasler, Mar 09 2020
It appears that these are the numbers k with the property that the smallest subpart in the symmetric representation of sigma(k) is 1. - Omar E. Pol, Aug 28 2021
The above conjecture is true. See A280851 for a proof. - Hartmut F. W. Hoft, Feb 02 2022
The n-th hexagonal number equals the sum of the n consecutive integers with the same parity starting at 2*n-1; for example, 1, 2+4, 3+5+7, 4+6+8+10, etc. In general, the n-th 2k-gonal number is the sum of the n consecutive integers with the same parity starting at (k-2)*n - (k-3). When k = 1 and 2, this result generates the positive integers, A000027, and the squares, A000290, respectively. - Charlie Marion, Mar 02 2022
Conjecture: For n>0, min{k such that there exist subsets A,B of {0,1,2,...,a(n)} such that |A|=|B|=k and A+B={0,1,2,...,2*a(n)}} = 2*n. - Michael Chu, Mar 09 2022
REFERENCES
Albert H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 189.
Louis Comtet, Advanced Combinatorics, Reidel, 1974, pp. 77-78. (In the integral formula on p. 77 a left bracket is missing for the cosine argument.)
E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 6.
L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 2.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See pp. 122-123.
LINKS
Daniel Mondot, Table of n, a(n) for n = 0..10000 (first 1000 terms by T. D. Noe)
C. K. Cook and M. R. Bacon, Some polygonal number summation formulas, Fib. Q., 52 (2014), 336-343.
Elena Deza and Michel Deza, Figurate Numbers: presentation of a book, 3rd Montreal-Toronto Workshop in Number Theory, October 7-9, 2011.
Anicius Manlius Severinus Boethius, De institutione arithmetica, Book 2, section 15.
Jonathan M. Borwein, Dirk Nuyens, Armin Straub and James Wan, Random Walk Integrals, The Ramanujan Journal, October 2011, 26:109. DOI: 10.1007/s11139-011-9325-y.
Cesar Ceballos and Viviane Pons, The s-weak order and s-permutahedra II: The combinatorial complex of pure intervals, arXiv:2309.14261 [math.CO], 2023. See p. 41.
Paul Cooijmans, Odds.
Olivier Danvy, Summa Summarum: Moessner's Theorem without Dynamic Programming, arXiv:2412.03127 [cs.DM], 2024. See p. 33.
Tomislav Došlić and Luka Podrug, Sweet division problems: from chocolate bars to honeycomb strips and back, arXiv:2304.12121 [math.CO], 2023.
Jose Manuel Garcia Calcines, Luis Javier Hernandez Paricio, and Maria Teresa Rivas Rodriguez, Semi-simplicial combinatorics of cyclinders and subdivisions, arXiv:2307.13749 [math.CO], 2023. See p. 32.
Pakawut Jiradilok and Elchanan Mossel, Gaussian Broadcast on Grids, arXiv:2402.11990 [cs.IT], 2024. See p. 27.
Sameen Ahmed Khan, Sums of the powers of reciprocals of polygonal numbers, Int'l J. of Appl. Math. (2020) Vol. 33, No. 2, 265-282.
Clark Kimberling, Complementary Equations, Journal of Integer Sequences, Vol. 10 (2007), Article 07.1.4.
Hyun Kwang Kim, On Regular Polytope Numbers, Proc. Amer. Math. Soc., 131 (2002), 65-75.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
Amelia Carolina Sparavigna, The groupoid of the Triangular Numbers and the generation of related integer sequences, Politecnico di Torino, Italy (2019).
J. C. Su, On some properties of two simultaneous polygonal sequences, JIS 10 (2007) 07.10.4, example 4.6.
Michel Waldschmidt, Continued fractions, Ecole de recherche CIMPA-Oujda, Théorie des Nombres et ses Applications, 18 - 29 mai 2015: Oujda (Maroc).
Eric Weisstein's World of Mathematics, Cocktail Party Graph.
Eric Weisstein's World of Mathematics, Dominating Set.
Eric Weisstein's World of Mathematics, Hexagonal Number.
Eric Weisstein's World of Mathematics, Maximal Irredundant Set.
Thomas Wieder, The number of certain k-combinations of an n-set, Applied Mathematics Electronic Notes, vol. 8 (2008), pp. 45-52.
FORMULA
a(n) = Sum_{k=1..n} tan^2((k - 1/2)*Pi/(2n)). - Ignacio Larrosa Cañestro, Apr 17 2001
E.g.f.: exp(x)*(x+2x^2). - Paul Barry, Jun 09 2003
G.f.: x*(1+3*x)/(1-x)^3. - Simon Plouffe in his 1992 dissertation, dropping the initial zero
a(n) = A000217(2*n-1) = A014105(-n).
a(n) = 4*A000217(n-1) + n. - Lekraj Beedassy, Jun 03 2004
a(n) = right term of M^n * [1,0,0], where M = the 3 X 3 matrix [1,0,0; 1,1,0; 1,4,1]. Example: a(5) = 45 since M^5 *[1,0,0] = [1,5,45]. - Gary W. Adamson, Dec 24 2006
Row sums of triangle A131914. - Gary W. Adamson, Jul 27 2007
Row sums of n-th row, triangle A134234 starting (1, 6, 15, 28, ...). - Gary W. Adamson, Oct 14 2007
Starting with offset 1, = binomial transform of [1, 5, 4, 0, 0, 0, ...]. Also, A004736 * [1, 4, 4, 4, ...]. - Gary W. Adamson, Oct 25 2007
a(n)^2 + (a(n)+1)^2 + ... + (a(n)+n-1)^2 = (a(n)+n+1)^2 + ... + (a(n)+2n-1)^2 + n^2; e.g., 6^2 + 7^2 = 9^2 + 2^2; 28^2 + 29^2 + 30^2 + 31^2 = 33^2 + 34^2 + 35^2 + 4^2. - Charlie Marion, Nov 10 2007
a(n) = binomial(n+1,2) + 3*binomial(n,2).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), a(0)=0, a(1)=1, a(2)=6. - Jaume Oliver Lafont, Dec 02 2008
a(n) = T(n) + 3*T(n-1), where T(n) is the n-th triangular number. - Vincenzo Librandi, Nov 10 2010
a(n) = a(n-1) + 4*n - 3 (with a(0)=0). - Vincenzo Librandi, Nov 20 2010
a(n) = A007606(A000290(n)). - Reinhard Zumkeller, Feb 12 2011
a(n) = 2*a(n-1) - a(n-2) + 4. - Ant King, Aug 26 2011
a(n+1) = A045896(2*n). - Reinhard Zumkeller, Dec 12 2011
a(2^n) = 2^(2n+1) - 2^n. - Ivan N. Ianakiev, Apr 13 2013
a(n) = binomial(2*n,2). - Gary Detlefs, Jul 28 2013
a(4*a(n)+7*n+1) = a(4*a(n)+7*n) + a(4*n+1). - Vladimir Shevelev, Jan 24 2014
Sum_{n>=1} 1/a(n) = 2*log(2) = 1.38629436111989...= A016627. - Vaclav Kotesovec, Apr 27 2016
Sum_{n>=1} (-1)^n/a(n) = log(2) - Pi/2. - Vaclav Kotesovec, Apr 20 2018
a(n+1) = trinomial(2*n+1, 2) = trinomial(2*n+1, 4*n), for n >= 0, with the trinomial irregular triangle A027907. a(n+1) = (n+1)*(2*n+1) = (1/Pi)*Integral_{x=0..2} (1/sqrt(4 - x^2))*(x^2 - 1)^(2*n+1)*R(4*n-2, x) with the R polynomial coefficients given in A127672. [Comtet, p. 77, the integral formula for q=3, n -> 2*n+1, k = 2, rewritten with x = 2*cos(phi)]. - Wolfdieter Lang, Apr 19 2018
Sum_{n>=1} 1/(a(n))^2 = 2*Pi^2/3-8*log(2) = 1.0345588... = 10*A182448 - A257872. - R. J. Mathar, Sep 12 2019
a(n) = (A005408(n-1) + A046092(n-1) + A001844(n-1))/2. - Ralf Steiner, Feb 27 2020
Product_{n>=2} (1 - 1/a(n)) = 2/3. - Amiram Eldar, Jan 21 2021
a(n) = floor(Sum_{k=(n-1)^2..n^2} sqrt(k)), for n >= 1. - Amrit Awasthi, Jun 13 2021
a(n+1) = A084265(2*n), n>=0. - Hartmut F. W. Hoft, Feb 02 2022
a(n) = A000290(n) + A002378(n-1). - Charles Kusniec, Sep 11 2022
MAPLE
A000384:=n->n*(2*n-1); seq(A000384(k), k=0..100); # Wesley Ivan Hurt, Sep 27 2013
MATHEMATICA
Table[n*(2 n - 1), {n, 0, 100}] (* Wesley Ivan Hurt, Sep 27 2013 *)
LinearRecurrence[{3, -3, 1}, {0, 1, 6}, 50] (* Harvey P. Dale, Sep 10 2015 *)
Join[{0}, Accumulate[Range[1, 312, 4]]] (* Harvey P. Dale, Mar 26 2016 *)
(* For Mathematica 10.4+ *) Table[PolygonalNumber[RegularPolygon[6], n], {n, 0, 48}] (* Arkadiusz Wesolowski, Aug 27 2016 *)
PolygonalNumber[6, Range[0, 20]] (* Eric W. Weisstein, Aug 17 2017 *)
CoefficientList[Series[x*(1 + 3*x)/(1 - x)^3 , {x, 0, 100}], x] (* Stefano Spezia, Sep 02 2018 *)
PROG
(PARI) a(n)=n*(2*n-1)
(PARI) a(n) = binomial(2*n, 2) \\ Altug Alkan, Oct 06 2015
(Haskell)
a000384 n = n * (2 * n - 1)
a000384_list = scanl (+) 0 a016813_list
-- Reinhard Zumkeller, Dec 16 2012
(Python) # Intended to compute the initial segment of the sequence, not isolated terms.
def aList():
x, y = 1, 1
yield 0
while True:
yield x
x, y = x + y + 4, y + 4
A000384 = aList()
print([next(A000384) for i in range(49)]) # Peter Luschny, Aug 04 2019
CROSSREFS
a(n)= A093561(n+1, 2), (4, 1)-Pascal column.
a(n) = A100345(n, n-1) for n>0.
Cf. A002939 (twice a(n): sums of Pythagorean triples (X, Y, Z=Y+1)).
Cf. A280851.
KEYWORD
nonn,easy,nice
EXTENSIONS
Partially edited by Joerg Arndt, Mar 11 2010
STATUS
approved
Number of binary partitions: number of partitions of 2n into powers of 2.
(Formerly M1011 N0378)
+10
109
1, 2, 4, 6, 10, 14, 20, 26, 36, 46, 60, 74, 94, 114, 140, 166, 202, 238, 284, 330, 390, 450, 524, 598, 692, 786, 900, 1014, 1154, 1294, 1460, 1626, 1828, 2030, 2268, 2506, 2790, 3074, 3404, 3734, 4124, 4514, 4964, 5414, 5938, 6462, 7060, 7658, 8350, 9042, 9828
OFFSET
0,2
COMMENTS
Also, a(n) = number of "non-squashing" partitions of 2n (or 2n+1), that is, partitions 2n = p_1 + p_2 + ... + p_k with 1 <= p_1 <= p_2 <= ... <= p_k and p_1 + p_2 + ... + p_i <= p_{i+1} for all 1 <= i < k [Hirschhorn and Sellers].
Row sums of A101566. - Paul Barry, Jan 03 2005
Equals infinite convolution product of [1,2,2,2,2,2,2,2,2] aerated A000079 - 1 times, i.e., [1,2,2,2,2,2,2,2,2] * [1,0,2,0,2,0,2,0,2] * [1,0,0,0,2,0,0,0,2]. - Mats Granvik and Gary W. Adamson, Aug 04 2009
Which can be further decomposed to the infinite convolution product of finally supported sequences, namely [1,1] aerated A000079 - 1 times with multiplicity A000027 + 1 times, i.e., [1,1] * [1,1] * [1,0,1] * [1,0,1] * [1,0,1] * ... (next terms are [1,0,0,0,1] 4 times, etc.). - Eitan Y. Levine, Jun 18 2023
Given A018819 = A000123 with repeats, polcoeff (1, 1, 2, 2, 4, 4, ...) * (1, 1, 1, ...) = (1, 2, 4, 6, 10, ...) = (1, 0, 2, 0, 4, 0, 6, ...) * (1, 2, 2, 2, ...). - Gary W. Adamson, Dec 16 2009
Let M = an infinite lower triangular matrix with (1, 2, 2, 2, ...) in every column shifted down twice. A000123 = lim_{n->infinity} M^n, the left-shifted vector considered as a sequence. Replacing (1, 2, 2, 2, ...) with (1, 3, 3, 3, ...) and following the same procedure, we obtain A171370: (1, 3, 6, 12, 18, 30, 42, 66, 84, 120, ...). - Gary W. Adamson, Dec 06 2009
First differences of the sequence are (1, 2, 2, 4, 4, 6, 6, 10, ...), A018819, i.e., the sequence itself with each term duplicated except for the first one (unless a 0 is prefixed before taking the first differences), as shown by the formula a(n) - a(n-1) = a(floor(n/2)), valid for all n including n = 0 if we let a(-1) = 0. - M. F. Hasler, Feb 19 2019
Sum over k <= n of number of partitions of k into powers of 2, A018819. - Peter Munn, Feb 21 2020
REFERENCES
G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976.
R. F. Churchhouse, Binary partitions, pp. 397-400 of A. O. L. Atkin and B. J. Birch, editors, Computers in Number Theory. Academic Press, NY, 1971.
N. G. de Bruijn, On Mahler's partition problem, Indagationes Mathematicae, vol. X (1948), 210-220.
G. Everest, A. van der Poorten, I. Shparlinski and T. Ward, Recurrence Sequences, Amer. Math. Soc., 2003; see esp. p. 255.
H. Gupta, A simple proof of the Churchhouse conjecture concerning binary partitions, Indian J. Pure Appl. Math. 3 (1972), 791-794.
H. Gupta, A direct proof of the Churchhouse conjecture concerning binary partitions, Indian J. Math. 18 (1976), 1-5.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..65536 (first 10001 terms from T. D. Noe)
C. Banderier, H.-K. Hwang, V. Ravelomanana and V. Zacharovas, Analysis of an exhaustive search algorithm in random graphs and the n^{c logn}-asymptotics, 2012. - From N. J. A. Sloane, Dec 23 2012
Sara Billey, Matjaž Konvalinka and Frederick A. Matsen IV, On trees, tanglegrams, and tangled chains, hal-02173394 [math.CO], 2020.
N. G. de Bruijn, On Mahler's partition problem, 1948.
R. F. Churchhouse, Congruence properties of the binary partition function, Proc. Cambridge Philos. Soc. 66 1969 371-376.
P. Dumas and P. Flajolet, Asymptotique des recurrences mahleriennes: le cas cyclotomique, Journal de Théorie des Nombres de Bordeaux 8 (1996), pp. 1-30.
Amanda Folsom et al, On a general class of non-squashing partitions, Discrete Mathematics 339.5 (2016): 1482-1506.
C.-E. Froberg, Accurate estimation of the number of binary partitions, Nordisk Tidskr. Informationsbehandling (BIT) 17 (1977), 386-391.
C.-E. Froberg, Accurate estimation of the number of binary partitions [Annotated scanned copy]
Maciej Gawron, Piotr Miska and Maciej Ulas, Arithmetic properties of coefficients of power series expansion of Prod_{n>=0} (1-x^(2^n))^t, arXiv:1703.01955 [math.NT], 2017.
H. Gupta, Proof of the Churchhouse conjecture concerning binary partitions, Proc. Camb. Phil. Soc. 70 (1971), 53-56.
M. D. Hirschhorn and J. A. Sellers, A different view of m-ary partitions, Australasian J. Combin., 30 (2004), 193-196.
M. D. Hirschhorn and J. A. Sellers, A different view of m-ary partitions
Youkow Homma, Jun Hwan Ryu and Benjamin Tong, Sequence non-squashing partitions, Slides from a talk, Jul 24 2014.
K. Ji and H. S. Wilf, Extreme palindromes, Amer. Math. Monthly, 115, no. 5 (2008), 447-451.
Y. Kachi and P. Tzermias, On the m-ary partition numbers, Algebra and Discrete Mathematics, Volume 19 (2015). Number 1, pp. 67-76.
D. E. Knuth, An almost linear recurrence, Fib. Quart., 4 (1966), 117-128.
M. Konvalinka and I. Pak, Cayley compositions, partitions, polytopes, and geometric bijections, Journal of Combinatorial Theory, Series A, Volume 123, Issue 1, April 2014, Pages 86-91.
M. Latapy, Partitions of an integer into powers, DMTCS Proceedings AA (DM-CCG), 2001, 215-228.
M. Latapy, Partitions of an integer into powers, DMTCS Proceedings AA (DM-CCG), 2001, 215-228. [Cached copy, with permission]
K. Mahler, On a special functional equation, Journ. London Math. Soc. 15 (1940), 115-123.
E. O'Shea, M-partitions: optimal partitions of weight for one scale pan, Discrete Math. 289 (2004), 81-93. See Lemma 29.
Igor Pak, Complexity problems in enumerative combinatorics, arXiv:1803.06636 [math.CO], 2018.
John L. Pfaltz, Evaluating the binary partition function when N = 2^n, Congr. Numer, 109:3-12, 1995. [Broken link]
B. Reznick, Some binary partition functions, in "Analytic number theory" (Conf. in honor P. T. Bateman, Allerton Park, IL, 1989), 451-477, Progr. Math., 85, Birkhäuser Boston, Boston, MA, 1990.
O. J. Rodseth, Enumeration of M-partitions, Discrete Math., 306 (2006), 694-698.
O. J. Rodseth and J. A. Sellers, Binary partitions revisited, J. Combinatorial Theory, Series A 98 (2002), 33-45.
O. J. Rodseth and J. A. Sellers, On a Restricted m-Non-Squashing Partition Function, Journal of Integer Sequences, Vol. 8 (2005), Article 05.5.4.
D. Ruelle, Dynamical zeta functions and transfer operators, Notices Amer. Math. Soc., 49 (No. 8, 2002), 887-895; see p. 888.
N. J. A. Sloane and J. A. Sellers, On non-squashing partitions, arXiv:math/0312418 [math.CO], 2003.
N. J. A. Sloane and J. A. Sellers, On non-squashing partitions, Discrete Math., 294 (2005), 259-274.
FORMULA
a(n) = A018819(2*n).
a(n) = a(n-1) + a(floor(n/2)). For proof see A018819.
2 * a(n) = a(n+1) + a(n-1) if n is even. - Michael Somos, Jan 07 2011
G.f.: (1-x)^(-1) Product_{n>=0} (1 - x^(2^n))^(-1).
a(n) = Sum_{i=0..n} a(floor(i/2)) [O'Shea].
a(n) = (1/n)*Sum_{k=1..n} (A038712(k)+1)*a(n-k), n > 1, a(0)=1. - Vladeta Jovovic, Aug 22 2002
Conjecture: Limit_{n ->infinity} (log(n)*a(2n))/(n*a(n)) = c = 1.63... - Benoit Cloitre, Jan 26 2003 [The constant c is equal to 2*log(2) = 1.38629436... =A016627. - Vaclav Kotesovec, Aug 07 2019]
G.f. A(x) satisfies A(x^2) = ((1-x)/(1+x)) * A(x). - Michael Somos, Aug 25 2003
G.f.: Product_{k>=0} (1+x^(2^k))/(1-x^(2^k)) = (Product_{k>=0} (1+x^(2^k))^(k+1) )/(1-x) = Product_{k>=0} (1+x^(2^k))^(k+2). - Joerg Arndt, Apr 24 2005
From Philippe Flajolet, Sep 06 2008: (Start)
The asymptotic rate of growth is known precisely - see De Bruijn's paper. With p(n) the number of partitions of n into powers of two, the asymptotic formula of de Bruijn is: log(p(2*n)) = 1/(2*L2)*(log(n/log(n)))^2 + (1/2 + 1/L2 + LL2/L2)*log(n) - (1 + LL2/L2)*log(log(n)) + Phi(log(n/log(n))/L2), where L2=log(2), LL2=log(log(2)) and Phi(x) is a certain periodic function with period 1 and a tiny amplitude.
Numerically, Phi(x) appears to have a mean value around 0.66. An expansion up to O(1) term had been obtained earlier by Kurt Mahler. (End)
G.f.: exp( Sum_{n>=1} 2^A001511(n) * x^n/n ), where 2^A001511(n) is the highest power of 2 that divides 2*n. - Paul D. Hanna, Oct 30 2012
(n/2)*a(n) = Sum_{k = 0..n-1} (n-k)/A000265(n-k)*a(k). - Peter Bala, Mar 03 2019
EXAMPLE
For non-squashing partitions and binary partitions see the example in A018819.
For n=3, the a(3)=6 admitted partitions of 2n=6 are 1+1+1+1+1+1, 1+1+1+1+2, 1+1+2+2, 2+2+2, 1+1+4 and 2+4. - R. J. Mathar, Aug 11 2021
MAPLE
A000123 := proc(n) option remember; if n=0 then 1 else A000123(n-1)+A000123(floor(n/2)); fi; end; [ seq(A000123(i), i=0..50) ];
# second Maple program: more efficient for large n; try: a( 10^25 );
g:= proc(b, n) option remember; `if`(b<0, 0, `if`(b=0 or
n=0, 1, `if`(b>=n, add((-1)^(t+1)*binomial(n+1, t)
*g(b-t, n), t=1..n+1), g(b-1, n)+g(2*b, n-1))))
end:
a:= n-> (t-> g(n/2^(t-1), t))(max(ilog2(2*n), 1)):
seq(a(n), n=0..60); # Alois P. Heinz, Apr 16 2009, revised Apr 14 2016
MATHEMATICA
a[0] = 1; a[n_] := a[n] = a[Floor[n/2]] + a[n-1]; Array[a, 49, 0] (* Jean-François Alcover, Apr 11 2011, after M. F. Hasler *)
Fold[Append[#1, Total[Take[Flatten[Transpose[{#1, #1}]], #2]]] &, {1}, Range[2, 49]] (* Birkas Gyorgy, Apr 18 2011 *)
PROG
(PARI) {a(n) = my(A, m); if( n<1, n==0, m=1; A = 1 + O(x); while(m<=n, m*=2; A = subst(A, x, x^2) * (1+x) / (1-x)); polcoeff(A, n))}; /* Michael Somos, Aug 25 2003 */
(PARI) {a(n) = if( n<1, n==0, a(n\2) + a(n-1))}; /* Michael Somos, Aug 25 2003 */
(PARI) A123=[]; A000123(n)={ n<3 && return(2^n); if( n<=#A123, A123[n] && return(A123[n]); A123[n-1] && return( A123[n] = A123[n-1]+A000123(n\2) ), n>2*#A123 && A123=concat(A123, vector((n-#A123)\2))); A123[if(n>#A123, 1, n)]=2*sum(k=1, n\2-1, A000123(k), 1)+(n%2+1)*A000123(n\2)} \\ Stores results in global vector A123 dynamically resized to at most 3n/4 when size is less than n/2. Gives a(n*10^6) in ~ n sec. - M. F. Hasler, Apr 30 2009
(PARI) {a(n)=polcoeff(exp(sum(m=1, n, 2^valuation(2*m, 2)*x^m/m)+x*O(x^n)), n)} \\ Paul D. Hanna, Oct 30 2012
(Haskell)
import Data.List (transpose)
a000123 n = a000123_list !! n
a000123_list = 1 : zipWith (+)
a000123_list (tail $ concat $ transpose [a000123_list, a000123_list])
-- Reinhard Zumkeller, Nov 15 2012, Aug 01 2011
(Magma) [1] cat [n eq 1 select n+1 else Self(n-1) + Self(n div 2): n in [1..70]]; // Vincenzo Librandi, Dec 17 2016
(Python)
from functools import lru_cache
@lru_cache(maxsize=None)
def A000123(n): return 1 if n == 0 else A000123(n-1) + A000123(n//2) # Chai Wah Wu, Jan 18 2022
CROSSREFS
Cf. A000041, A002033, A002487, A002577, A005704-A005706, A023359, A040039, A100529. Partial sums and bisection of A018819.
A column of A072170. Row sums of A089177. Twice A033485.
Cf. A145515. - Alois P. Heinz, Apr 16 2009
Cf. A171370. - Gary W. Adamson, Dec 06 2009
KEYWORD
nonn,easy,core,nice
EXTENSIONS
More terms from Robin Trew (trew(AT)hcs.harvard.edu)
Values up to a(10^4) checked with given PARI code by M. F. Hasler, Apr 30 2009
STATUS
approved
Decimal expansion of log_10(4).
+10
24
6, 0, 2, 0, 5, 9, 9, 9, 1, 3, 2, 7, 9, 6, 2, 3, 9, 0, 4, 2, 7, 4, 7, 7, 7, 8, 9, 4, 4, 8, 9, 8, 6, 0, 5, 3, 5, 3, 6, 3, 7, 9, 7, 6, 2, 9, 2, 4, 2, 1, 7, 0, 8, 2, 6, 2, 0, 8, 5, 4, 9, 2, 2, 2, 5, 4, 2, 1, 6, 3, 7, 8, 5, 4, 8, 8, 4, 9, 0, 1, 8, 9, 7, 3, 8, 5, 4, 5, 0, 4, 2, 3, 6, 3, 7, 2, 3, 4, 4, 0, 8, 1
OFFSET
0,1
COMMENTS
In engineering (all branches, but particularly electronic and electrical) power and amplitude ratios are measured rigorously in decibels (dB). This constant, with offset 1 (i.e., 6.02... = 10*A114493) is the dB equivalent of a 2:1 amplitude ratio or, equivalently, 4:1 power ratio. - Stanislav Sykora, Dec 11 2013
LINKS
Eric Weisstein's World of Mathematics, Catalan Number
Eric Weisstein's World of Mathematics, Central Binomial Coefficient
Wikipedia, Decibel
FORMULA
A016627 divided by A002392. Two times A007524. - R. J. Mathar, Feb 21 2013
EXAMPLE
0.602059991...
MAPLE
log10(4.0) ; # R. J. Mathar, Feb 21 2013
MATHEMATICA
RealDigits[Log[10, 4], 10, 100][[1]] (* Vincenzo Librandi, Sep 10 2013 *)
PROG
(PARI) log(4)/log(10) \\ Charles R Greathouse IV, Aug 04 2020
CROSSREFS
Cf. decimal expansion of log_10(m): A007524 (m=2), A114490 (m=3), this sequence, A153268 (m=5), A153496 (m=6), A153620 (m=7), A153790 (m=8), A104139 (m=9), A154182 (m=11), A154203 (m=12), A154368 (m=13), A154478 (m=14), A154580 (m=15), A154794 (m=16), A154860 (m=17), A154953 (m=18), A155062 (m=19), A155522 (m=20), A155677 (m=21), A155746 (m=22), A155830 (m=23), A155979 (m=24).
KEYWORD
nonn,cons,easy
AUTHOR
Eric W. Weisstein, Dec 01 2005
STATUS
approved
a(n) = prime(2*n) - 2*prime(n).
+10
17
-1, 1, 3, 5, 7, 11, 9, 15, 15, 13, 17, 15, 19, 21, 19, 25, 21, 29, 29, 31, 35, 35, 33, 45, 35, 37, 45, 49, 53, 55, 39, 49, 43, 59, 51, 57, 59, 57, 63, 63, 63, 71, 61, 71, 69, 81, 69, 57, 67, 83, 91, 91, 95, 91, 87, 87, 81, 99, 93, 97, 107, 97, 87, 97, 107, 109, 95, 95, 93, 111, 115, 109, 105, 111, 105, 115, 109, 117, 127, 123, 115
OFFSET
1,3
COMMENTS
a(n) = A022457(n) for n > 1.
a(n) = A031215(n)-A100484(n) = A072473(n)-A000040(n); see A179740 for primes. - Reinhard Zumkeller, Jul 25 2010
Asymptotically, a(n) ~ log(4) n, with log(4) = 2 log 2 = 1.38629436111989... = A016627. - M. F. Hasler, Oct 19 2013
LINKS
MATHEMATICA
Table[Prime[2n]-2Prime[n], {n, 100}] (* Harvey P. Dale, Aug 21 2016 *)
PROG
(PARI) { for (n = 1, 1000, a=prime(2*n) - prime(n)*2; write("b066066.txt", n, " ", a) ) } \\ Harry J. Smith, Nov 09 2009
(PARI) A066066(n)=prime(2*n)-2*prime(n) \\ M. F. Hasler, Oct 19 2013
KEYWORD
sign
AUTHOR
Reinhard Zumkeller, Dec 01 2001
STATUS
approved
Decimal expansion of the generalized Euler constant gamma(1,4).
+10
17
7, 1, 0, 2, 8, 9, 7, 9, 3, 0, 6, 4, 0, 9, 3, 6, 9, 7, 3, 1, 3, 7, 6, 6, 4, 7, 5, 7, 9, 5, 0, 8, 2, 6, 1, 0, 3, 0, 4, 0, 6, 1, 0, 4, 2, 4, 9, 6, 9, 3, 2, 9, 4, 0, 8, 5, 3, 4, 7, 9, 8, 8, 5, 1, 3, 3, 0, 4, 2, 3, 8, 7, 9, 7, 2, 6, 1, 5, 9, 7, 1, 4, 6, 4, 2, 0, 6, 9, 5, 0, 7, 3, 9, 8, 0, 5, 9, 9, 2, 7, 6, 1, 9
OFFSET
0,1
REFERENCES
Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.5.3, p. 32.
LINKS
D. H. Lehmer, Euler constants for arithmetic progressions, Acta Arith. 27 (1975), p. 134.
FORMULA
Equals (2*EulerGamma + Pi + 2*log(2))/8.
Equals Sum_{n>=0} (1/(4n+1) - 1/2*arctanh(2/(4n+3))).
Equals -(psi(1/4) + log(4))/4 = (A020777 - A016627)/4. - Amiram Eldar, Jan 07 2024
EXAMPLE
0.71028979306409369731376647579508261030406104249693294...
MATHEMATICA
RealDigits[EulerGamma/4 + Pi/8 + Log[2]/4, 10, 103] // First
PROG
(PARI) default(realprecision, 100); (2*Euler + Pi + 2*log(2))/8 \\ G. C. Greubel, Aug 27 2018
(Magma) R:=RealField(100); (2*EulerGamma(R) + Pi(R) + 2*Log(2))/8; // G. C. Greubel, Aug 27 2018
CROSSREFS
Cf. A001620 (EulerGamma), A016627, A020777, A228725 (gamma(1,2)), A256425 (gamma(1,3)), A256779-A256784 (selection of ruler-and-compass constructible gamma(r,k)).
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved
a(n) is the number of zeros of the Chebyshev S(n, x) polynomial in the open interval (-sqrt(2), +sqrt(2)).
+10
9
0, 1, 2, 1, 2, 3, 4, 3, 4, 5, 6, 5, 6, 7, 8, 7, 8, 9, 10, 9, 10, 11, 12, 11, 12, 13, 14, 13, 14, 15, 16, 15, 16, 17, 18, 17, 18, 19, 20, 19, 20, 21, 22, 21, 22, 23, 24, 23, 24, 25, 26, 25, 26, 27, 28, 27, 28, 29, 30, 29, 30, 31, 32, 31, 32, 33, 34, 33, 34
OFFSET
0,3
COMMENTS
See a May 06 2017 comment on A049310 where these problems are considered which originated in a conjecture by Michel Lagneau (see A008611) on Fibonacci polynomials.
FORMULA
a(n) = 2*b(n) if n is even, else a(n) = 1 + 2*b(n), with b(n) = floor(n/2) - floor((n + 1)/4) = A059169(n+1).
G.f. for {b(n)}: Sum_{n>=0} b(n)*x^n = x^2*(1 - x + x^2)/((1 - x)*(1 - x^4)) (see A059169).
From Colin Barker, May 18 2017: (Start)
G.f.: x*(1 + x - x^2 + x^3) / ((1 - x)^2*(1 + x)*(1 + x^2)).
a(n) = a(n-1) + a(n-4) - a(n-5) for n>4.
(End)
a(n) = A162330(n-1) for n >= 2. - Michel Marcus, Nov 01 2017
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*log(2) (A016627). - Amiram Eldar, Sep 17 2023
MATHEMATICA
Table[2 (Floor[n/2] - Floor[(n + 1)/4]) + Boole[OddQ@ n], {n, 0, 52}] (* Michael De Vlieger, May 10 2017 *)
PROG
(PARI) concat(0, Vec(x*(1 + x - x^2 + x^3) / ((1 - x)^2*(1 + x)*(1 + x^2)) + O(x^100))) \\ Colin Barker, May 18 2017
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, May 10 2017
STATUS
approved
Decimal expansion of Sum_{p = prime} 1/(p*log p)^2.
+10
8
6, 3, 7, 0, 5, 6, 1, 8, 4, 0, 7, 4, 6, 7, 6, 4, 3, 3, 0, 5, 9, 9, 6, 8, 5, 8, 5, 0, 4, 7, 8, 5, 2, 7, 6, 9, 4, 5, 7, 9, 8, 9, 6, 0, 7, 7, 1, 9, 9, 5, 3, 3, 6, 7, 0, 9, 6, 0, 1, 3, 7, 1, 0, 7, 5, 5, 8, 8, 3, 1, 6, 0, 4, 3, 3, 2, 7, 1, 5, 1, 6, 8, 3, 6, 7, 5, 3, 8, 3, 5, 9, 6, 6, 1, 3, 3, 1, 8, 1, 3, 1, 3, 8, 2, 7, 5
OFFSET
0,1
COMMENTS
Obtained by expanding the formalism of arXiv:0811.4739 to double integrals over the Riemann zeta function.
EXAMPLE
1/A016627^2 + 1/A016650^2 + 1/8.047189^2 + ... = 0.637056184074676....
MATHEMATICA
digits = 106; precision = digits + 10;
tmax = 500; (* integrand considered negligible beyond tmax *)
kmax = 300; (* f(k) considered negligible beyond kmax *)
InLogZeta[k_] := NIntegrate[(t - 2k) Log[Zeta[t]], {t, 2k, tmax}, WorkingPrecision -> precision, MaxRecursion -> 20, AccuracyGoal -> precision];
f[k_] := With[{mu = MoebiusMu[k]}, If[mu == 0, 0, (mu/k^3)*InLogZeta[k]]];
s = 0;
Do[s = s + f[k]; Print[k, " ", s], {k, 1, kmax}];
RealDigits[s][[1]][[1 ;; digits]] (* Jean-François Alcover, Jun 21 2022, after Vaclav Kotesovec *)
PROG
(PARI) default(realprecision, 200); s=0; for(k=1, 300, s = s + moebius(k)/k^3 * intnum(x=2*k, [[1], 1], (x-2*k)*log(zeta(x))); print(s)); \\ Vaclav Kotesovec, Jun 12 2022
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
R. J. Mathar, Sep 14 2018
EXTENSIONS
More terms from Vaclav Kotesovec, Jun 12 2022
STATUS
approved
Decimal expansion of the sum of the reciprocals of the decagonal numbers (A001107).
+10
7
1, 2, 1, 6, 7, 4, 5, 9, 5, 6, 1, 5, 8, 2, 4, 4, 1, 8, 2, 4, 9, 4, 3, 3, 9, 3, 5, 2, 0, 0, 4, 7, 6, 0, 3, 8, 2, 1, 0, 8, 3, 6, 1, 7, 0, 0, 9, 2, 2, 7, 7, 2, 8, 9, 0, 9, 4, 9, 8, 3, 7, 4, 4, 1, 5, 4, 4, 6, 9, 6, 3, 5, 6, 3, 5, 0, 7, 2, 9, 5, 4, 8, 7, 1, 0, 5, 3, 5, 7, 9, 7, 8, 8, 6, 7, 7, 1, 5, 3, 2, 2, 0, 5, 6, 9
OFFSET
1,2
COMMENTS
For the partial sums of the reciprocals of the (positive) decagonal numbers see A250551(n+1)/A294515(n), n >= 0. - Wolfdieter Lang, Nov 07 2017
FORMULA
Sum_{n>0} 1/(4n^2 - 3n) = log(2) + Pi/6, (A002162 + A019673).
EXAMPLE
1.216745956158244182494339352004760382108361700922772890949837441544696356350....
MATHEMATICA
RealDigits[ Log[2] + Pi/6, 10, 111][[1]] (* or *)
RealDigits[ Sum[1/(4n^2 - 3n), {n, 1 , Infinity}], 10, 111][[1]]
PROG
(PARI) log(2)+Pi/6 \\ Charles R Greathouse IV, Feb 08 2023
KEYWORD
nonn,cons,easy
AUTHOR
Robert G. Wilson v, Jul 03 2014
STATUS
approved

Search completed in 0.057 seconds