Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Search: a049452 -id:a049452
     Sort: relevance | references | number | modified | created      Format: long | short | data
Numerators of the partial sums of the reciprocals of the positive numbers (k + 1)*(6*k + 5) = A049452(k+1).
+20
3
1, 27, 1487, 71207, 423323, 5021921, 208393341, 19767960169, 9496615779853, 112702096556215, 7360072449683999, 524616965933727859, 526363371877036219, 43813027890740553917, 781806518388353706041, 148866078528885256002173, 15064339628673236669081953, 538212602352090865654383697
OFFSET
0,2
COMMENTS
The corresponding denominators are given in A294965.
For the general case V(m,r;n) = Sum_{k=0..n} 1/((k + 1)*(m*k + r)) = (1/(m - r))*Sum_{k=0..n} (m/(m*k + r) - 1/(k+1)), for r = 1, ..., m-1 and m = 2, 3, ..., and their limits see a comment in A294512. Here [m,r] = [6,5].
The limit of the series is V(6,5) = lim_{n -> oo} V(6,5;n) = . The value is (3/2)*log(3) + 2*log(2) - (1/2)*Pi*sqrt(3) = 0.3135137477... given in A294966.
REFERENCES
Max Koecher, Klassische elementare Analysis, Birkhäuser, Basel, Boston, 1987, Eulersche Reihen, pp. 189 - 193.
LINKS
Eric Weisstein's World of Mathematics, Digamma Function
FORMULA
a(n) = numerator(V(6,5;n)) with V(6,5;n) = Sum_{k=0..n} 1/((k + 1)*(6*k + 5)) = Sum_{k=0..n} 1/A049452(k+1) = Sum_{k=0..n} (1/(k + 5/6) - 1/(k + 1)) = -Psi(5/6) + Psi(n+11/6) - (gamma + Psi(n+2)) with the digamma function Psi and the Euler-Mascheroni constant gamma = -Psi(1) from A001620.
EXAMPLE
The rationals V(6,5;n), n >= 0, begin: 1/5, 27/110, 1487/5610, 71207/258060, 423323/1496748, 5021921/17462060, 208393341/715944460, 19767960169/67298779240, 9496615779853/32101517697480, ...
V(6,5;10^6) = 0.313513577 (Maple, 10 digits) to be compared with the rounded ten digits 0.3135137478 obtained from V(6,5) given in A294966.
MAPLE
map(numer, ListTools:-PartialSums([seq(1/(k+1)/(6*k+5), k=0..20)])); # Robert Israel, Nov 29 2017
MATHEMATICA
Table[Numerator[Sum[1/((k+1)*(6*k+5)), {k, 0, n}]], {n, 0, 25}] (* G. C. Greubel, Aug 29 2018 *)
PROG
(PARI) a(n) = numerator(sum(k=0, n, 1/((k + 1)*(6*k + 5)))); \\ Michel Marcus, Nov 27 2017
(Magma) [Numerator((&+[1/((k+1)*(6*k+5)): k in [0..n]])): n in [0..25]]; // G. C. Greubel, Aug 29 2018
CROSSREFS
KEYWORD
nonn,frac,easy
AUTHOR
Wolfdieter Lang, Nov 27 2017
STATUS
approved
Denominators of the partial sums of the reciprocals of the numbers (k + 1)*(6*k + 5) = A049452(k+1).
+20
3
5, 110, 5610, 258060, 1496748, 17462060, 715944460, 67298779240, 32101517697480, 378797908830264, 24621864073967160, 1748152349251668360, 1748152349251668360, 145096644987888473880, 2582720280784414835064, 490716853349038818662160, 49562402188252920684878160
OFFSET
0,1
COMMENTS
The corresponding numerators are given in A294964. There details are found.
LINKS
FORMULA
a(n) = denominator(V(6,5;n)) with V(6,5;n) = Sum_{k=0..n} 1/((k + 1)*(6*k + 5)) = Sum_{k=0..n} 1/A049452(k+1) = Sum_{k=0..n} (1/(k + 5/6) - 1/(k + 1)).
EXAMPLE
For the rationals V(6,5;n) see A294964.
MAPLE
map(denom, ListTools:-PartialSums([seq(1/(k+1)/(6*k+5), k=0..20)])); # Robert Israel, Nov 29 2017
PROG
(PARI) a(n) = denominator(sum(k=0, n, 1/((k + 1)*(6*k + 5)))); \\ Michel Marcus, Nov 27 2017
CROSSREFS
KEYWORD
nonn,frac,easy
AUTHOR
Wolfdieter Lang, Nov 27 2017
STATUS
approved
Decimal expansion of the sum of the reciprocals of the numbers (k+1)*(6*k+5) = A049452(k+1) for k >= 0.
+20
2
3, 1, 3, 5, 1, 3, 7, 4, 7, 7, 7, 0, 7, 2, 8, 3, 8, 0, 0, 3, 6, 2, 1, 4, 7, 1, 1, 8, 3, 6, 9, 0, 8, 0, 9, 4, 6, 9, 6, 1, 3, 6, 7, 3, 3, 3, 1, 5, 5, 2, 3, 8, 2, 2, 4, 8, 8, 5, 7, 4, 1, 1, 6, 3, 6, 0, 8, 4, 3, 9, 1, 2, 0, 7, 7, 7, 7, 2, 0, 5, 5, 9, 9, 5, 9, 6, 2, 8, 0, 3, 8, 9, 5, 3, 4, 5, 2, 5, 4
OFFSET
0,1
COMMENTS
In the Koecher reference v_6(5) = (1/6)*(present value V(6,5)) = 0.05225229129512..., given on p. 192 as (1/4)*log(3) + (1/3)*log(2) - Pi/(4*sqrt(3)).
REFERENCES
Max Koecher, Klassische elementare Analysis, Birkhäuser, Basel, Boston, 1987, Eulersche Reihen, pp. 189-193.
LINKS
Eric Weisstein's World of Mathematics, Digamma Function.
FORMULA
Sum_{k>=0} 1/((6*n + 5)*(n + 1)) =: V(6,5) = (3/2)*log(3) + 2*log(2) - (1/2)*Pi*sqrt(3) = -Psi(5/6) + Psi(1) with the digamma function Psi and Psi(1) = -gamma = A001620.
The partial sums of this series are given in A294964/A294965.
Equals Sum_{k>=2} zeta(k)/6^(k-1). - Amiram Eldar, May 31 2021
EXAMPLE
0.313513747770728380036214711836908094696136733315523822488574116360843...
MATHEMATICA
RealDigits[-PolyGamma[0, 5/6] + PolyGamma[0, 1], 10, 100][[1]] (* G. C. Greubel, Sep 05 2018 *)
PROG
(PARI) default(realprecision, 100); (3/2)*log(3) + 2*log(2) - (1/2)*Pi*sqrt(3) \\ G. C. Greubel, Sep 05 2018
(Magma) SetDefaultRealField(RealField(100)); R:= RealField(); (3/2)*Log(3) + 2*Log(2) - (1/2)*Pi(R)*Sqrt(3); // G. C. Greubel, Sep 05 2018
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Wolfdieter Lang, Nov 27 2017
STATUS
approved
Pentagonal numbers: a(n) = n*(3*n-1)/2.
(Formerly M3818 N1562)
+10
540
0, 1, 5, 12, 22, 35, 51, 70, 92, 117, 145, 176, 210, 247, 287, 330, 376, 425, 477, 532, 590, 651, 715, 782, 852, 925, 1001, 1080, 1162, 1247, 1335, 1426, 1520, 1617, 1717, 1820, 1926, 2035, 2147, 2262, 2380, 2501, 2625, 2752, 2882, 3015, 3151
OFFSET
0,3
COMMENTS
The average of the first n (n > 0) pentagonal numbers is the n-th triangular number. - Mario Catalani (mario.catalani(AT)unito.it), Apr 10 2003
a(n) is the sum of n integers starting from n, i.e., 1, 2 + 3, 3 + 4 + 5, 4 + 5 + 6 + 7, etc. - Jon Perry, Jan 15 2004
Partial sums of 1, 4, 7, 10, 13, 16, ... (1 mod 3), a(2k) = k(6k-1), a(2k-1) = (2k-1)(3k-2). - Jon Perry, Sep 10 2004
Starting with offset 1 = binomial transform of [1, 4, 3, 0, 0, 0, ...]. Also, A004736 * [1, 3, 3, 3, ...]. - Gary W. Adamson, Oct 25 2007
If Y is a 3-subset of an n-set X then, for n >= 4, a(n-3) is the number of 4-subsets of X having at least two elements in common with Y. - Milan Janjic, Nov 23 2007
Solutions to the duplication formula 2*a(n) = a(k) are given by the index pairs (n, k) = (5,7), (5577, 7887), (6435661, 9101399), etc. The indices are integer solutions to the pair of equations 2(6n-1)^2 = 1 + y^2, k = (1+y)/6, so these n can be generated from the subset of numbers [1+A001653(i)]/6, any i, where these are integers, confined to the cases where the associated k=[1+A002315(i)]/6 are also integers. - R. J. Mathar, Feb 01 2008
a(n) is a binomial coefficient C(n,4) (A000332) if and only if n is a generalized pentagonal number (A001318). Also see A145920. - Matthew Vandermast, Oct 28 2008
Even octagonal numbers divided by 8. - Omar E. Pol, Aug 18 2011
Sequence found by reading the line from 0, in the direction 0, 5, ... and the line from 1, in the direction 1, 12, ..., in the square spiral whose vertices are the generalized pentagonal numbers A001318. - Omar E. Pol, Sep 08 2011
The hyper-Wiener index of the star-tree with n edges (see A196060, example). - Emeric Deutsch, Sep 30 2011
More generally the n-th k-gonal number is equal to n + (k-2)*A000217(n-1), n >= 1, k >= 3. In this case k = 5. - Omar E. Pol, Apr 06 2013
Note that both Euler's pentagonal theorem for the partition numbers and Euler's pentagonal theorem for the sum of divisors refer more exactly to the generalized pentagonal numbers, not this sequence. For more information see A001318, A175003, A238442. - Omar E. Pol, Mar 01 2014
The Fuss-Catalan numbers are Cat(d,k)= [1/(k*(d-1)+1)]*binomial(k*d,k) and enumerate the number of (d+1)-gon partitions of a (k*(d-1)+2)-gon (cf. Schuetz and Whieldon link). a(n)= Cat(n,3), so enumerates the number of (n+1)-gon partitions of a (3*(n-1)+2)-gon. Analogous sequences are A100157 (k=4) and A234043 (k=5). - Tom Copeland, Oct 05 2014
Binomial transform of (0, 1, 3, 0, 0, 0, ...) (A169585 with offset 1) and second partial sum of (0, 1, 3, 3, 3, ...). - Gary W. Adamson, Oct 05 2015
For n > 0, a(n) is the number of compositions of n+8 into n parts avoiding parts 2 and 3. - Milan Janjic, Jan 07 2016
a(n) is also the number of edges in the Mycielskian of the complete graph K[n]. Indeed, K[n] has n vertices and n(n-1)/2 edges. Then its Mycielskian has n + 3n(n-1)/2 = n(3n-1)/2. See p. 205 of the West reference. - Emeric Deutsch, Nov 04 2016
Sum of the numbers from n to 2n-1. - Wesley Ivan Hurt, Dec 03 2016
Also the number of maximal cliques in the n-Andrásfai graph. - Eric W. Weisstein, Dec 01 2017
Coefficients in the hypergeometric series identity 1 - 5*(x - 1)/(2*x + 1) + 12*(x - 1)*(x - 2)/((2*x + 1)*(2*x + 2)) - 22*(x - 1)*(x - 2)*(x - 3)/((2*x + 1)*(2*x + 2)*(2*x + 3)) + ... = 0, valid for Re(x) > 1. Cf. A002412 and A002418. Column 2 of A103450. - Peter Bala, Mar 14 2019
A generalization of the Comment dated Apr 10 2003 follows. (k-3)*A000292(n-2) plus the average of the first n (2k-1)-gonal numbers is the n-th k-gonal number. - Charlie Marion, Nov 01 2020
a(n+1) is the number of Dyck paths of size (3,3n+1); i.e., the number of NE lattice paths from (0,0) to (3,3n+1) which stay above the line connecting these points. - Harry Richman, Jul 13 2021
REFERENCES
Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, pages 2 and 311.
Raymond Ayoub, An Introduction to the Analytic Theory of Numbers, Amer. Math. Soc., 1963; p. 129.
Albert H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 189.
E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 6.
L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 1.
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 284.
Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 64.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
André Weil, Number theory: an approach through history; from Hammurapi to Legendre, Birkhäuser, Boston, 1984; see p. 186.
David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, 1987, pp. 98-100.
Douglas B. West, Introduction to Graph Theory, 2nd ed., Prentice-Hall, NJ, 2001.
LINKS
Daniel Mondot, Table of n, a(n) for n = 0..10000 (first 1000 terms by T. D. Noe)
George E. Andrews, Euler's "De Partitio Numerorum", Bull. Amer. Math. Soc., 44 (No. 4, 2007), 561-573.
S. Barbero, U. Cerruti and N. Murru, Transforming Recurrent Sequences by Using the Binomial and Invert Operators, J. Int. Seq. 13 (2010) # 10.7.7, section 4.4.
Jordan Bell, Euler and the pentagonal number theorem, arXiv:math/0510054 [math.HO], 2005-2006.
Anicius Manlius Severinus Boethius, De institutione arithmetica libri duo, Book 2, sections 13-14.
C. K. Cook and M. R. Bacon, Some polygonal number summation formulas, Fib. Q., 52 (2014), 336-343.
Stephan Eberhart, Letter to N. J. A. Sloane, Jan 06 1978, also scanned copy of Mathematical-Physical Correspondence, No. 22, Christmas 1977.
Leonhard Euler, Observatio de summis divisorum p. 8.
Leonhard Euler, An observation on the sums of divisors, arXiv:math/0411587 [math.HO], 2004, 2009. See p. 8.
Leonhard Euler, On the remarkable properties of the pentagonal numbers, arXiv:math/0505373 [math.HO], 2005.
Rodney T. Hansen, Arithmetic of pentagonal numbers, Fib. Quart., 8 (1970), 83-87.
Milan Janjic and Boris Petkovic, A Counting Function, arXiv preprint arXiv:1301.4550 [math.CO], 2013. - From N. J. A. Sloane, Feb 13 2013
Jangwon Ju and Daejun Kim, The pentagonal theorem of sixty-three and generalizations of Cauchy's lemma, arXiv:2010.16123 [math.NT], 2020.
Bir Kafle, Florian Luca and Alain Togbé, Pentagonal and heptagonal repdigits, Annales Mathematicae et Informaticae. pp. 137-145.
Sameen Ahmed Khan, Sums of the powers of reciprocals of polygonal numbers, Int'l J. of Appl. Math. (2020) Vol. 33, No. 2, 265-282.
Hyun Kwang Kim, On Regular Polytope Numbers, Proc. Amer. Math. Soc., 131 (2002), 65-75.
Clark Kimberling, Complementary Equations, Journal of Integer Sequences, Vol. 10 (2007), Article 07.1.4.
Clark Kimberling and John E. Brown, Partial Complements and Transposable Dispersions, J. Integer Seqs., Vol. 7, 2004.
R. P. Loh, A. G. Shannon and A. F. Horadam, Divisibility Criteria and Sequence Generators Associated with Fermat Coefficients, Preprint, 1980.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
Cliff Reiter, Polygonal Numbers and Fifty One Stars, Lafayette College, Easton, PA (2019).
Alison Schuetz and Gwyneth Whieldon, Polygonal Dissections and Reversions of Series, arXiv:1401.7194 [math.CO], 2014.
W. Sierpiński, Sur les nombres pentagonaux, Bull. Soc. Royale Sciences Liège, 33 (No. 9-10, 1964), 513-517. [Annotated scanned copy]
Michel Waldschmidt, Continued fractions, Ecole de recherche CIMPA-Oujda, Théorie des Nombres et ses Applications, 18 - 29 mai 2015: Oujda (Maroc).
Eric Weisstein's World of Mathematics, Andrásfai Graph.
Eric Weisstein's World of Mathematics, Maximal Clique.
Eric Weisstein's World of Mathematics, Pentagonal Number.
Wikipedia, Mycielskian.
FORMULA
Product_{m > 0} (1 - q^m) = Sum_{k} (-1)^k*x^a(k). - Paul Barry, Jul 20 2003
G.f.: x*(1+2*x)/(1-x)^3.
E.g.f.: exp(x)*(x+3*x^2/2).
a(n) = n*(3*n-1)/2.
a(-n) = A005449(n).
a(n) = binomial(3*n, 2)/3. - Paul Barry, Jul 20 2003
a(n) = A000290(n) + A000217(n-1). - Lekraj Beedassy, Jun 07 2004
a(0) = 0, a(1) = 1; for n >= 2, a(n) = 2*a(n-1) - a(n-2) + 3. - Miklos Kristof, Mar 09 2005
a(n) = Sum_{k=1..n} (2*n - k). - Paul Barry, Aug 19 2005
a(n) = 3*A000217(n) - 2*n. - Lekraj Beedassy, Sep 26 2006
a(n) = A126890(n, n-1) for n > 0. - Reinhard Zumkeller, Dec 30 2006
a(n) = A049452(n) - A022266(n) = A033991(n) - A005476(n). - Zerinvary Lajos, Jun 12 2007
Equals A034856(n) + (n - 1)^2. Also equals A051340 * [1,2,3,...]. - Gary W. Adamson, Jul 27 2007
a(n) = binomial(n+1, 2) + 2*binomial(n, 2).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), a(0) = 0, a(1) = 1, a(2) = 5. - Jaume Oliver Lafont, Dec 02 2008
a(n) = a(n-1) + 3*n-2 with n > 0, a(0)=0. - Vincenzo Librandi, Nov 20 2010
a(n) = A000217(n) + 2*A000217(n-1). - Vincenzo Librandi, Nov 20 2010
a(n) = A014642(n)/8. - Omar E. Pol, Aug 18 2011
a(n) = A142150(n) + A191967(n). - Reinhard Zumkeller, Jul 07 2012
a(n) = (A000290(n) + A000384(n))/2 = (A000217(n) + A000566(n))/2 = A049450(n)/2. - Omar E. Pol, Jan 11 2013
a(n) = n*A000217(n) - (n-1)*A000217(n-1). - Bruno Berselli, Jan 18 2013
a(n) = A005449(n) - n. - Philippe Deléham, Mar 30 2013
From Oskar Wieland, Apr 10 2013: (Start)
a(n) = a(n+1) - A016777(n),
a(n) = a(n+2) - A016969(n),
a(n) = a(n+3) - A016777(n)*3 = a(n+3) - A017197(n),
a(n) = a(n+4) - A016969(n)*2 = a(n+4) - A017641(n),
a(n) = a(n+5) - A016777(n)*5,
a(n) = a(n+6) - A016969(n)*3,
a(n) = a(n+7) - A016777(n)*7,
a(n) = a(n+8) - A016969(n)*4,
a(n) = a(n+9) - A016777(n)*9. (End)
a(n) = A000217(2n-1) - A000217(n-1), for n > 0. - Ivan N. Ianakiev, Apr 17 2013
a(n) = A002411(n) - A002411(n-1). - J. M. Bergot, Jun 12 2013
Sum_{n>=1} a(n)/n! = 2.5*exp(1). - Richard R. Forberg, Jul 15 2013
a(n) = floor(n/(exp(2/(3*n)) - 1)), for n > 0. - Richard R. Forberg, Jul 27 2013
From Vladimir Shevelev, Jan 24 2014: (Start)
a(3*a(n) + 4*n + 1) = a(3*a(n) + 4*n) + a(3*n+1).
A generalization. Let {G_k(n)}_(n >= 0) be sequence of k-gonal numbers (k >= 3). Then the following identity holds: G_k((k-2)*G_k(n) + c(k-3)*n + 1) = G_k((k-2)*G_k(n) + c(k-3)*n) + G_k((k-2)*n + 1), where c = A000124. (End)
A242357(a(n)) = 1 for n > 0. - Reinhard Zumkeller, May 11 2014
Sum_{n>=1} 1/a(n)= (1/3)*(9*log(3) - sqrt(3)*Pi). - Enrique Pérez Herrero, Dec 02 2014. See the decimal expansion A244641.
a(n) = (A000292(6*n+k-1)-A000292(k))/(6*n-1)-A000217(3*n+k), for any k >= 0. - Manfred Arens, Apr 26 2015 [minor edits from Wolfdieter Lang, May 10 2015]
a(n) = A258708(3*n-1,1) for n > 0. - Reinhard Zumkeller, Jun 23 2015
a(n) = A007584(n) - A245301(n-1), for n > 0. - Manfred Arens, Jan 31 2016
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*(sqrt(3)*Pi - 6*log(2))/3 = 0.85501000622865446... - Ilya Gutkovskiy, Jul 28 2016
a(m+n) = a(m) + a(n) + 3*m*n. - Etienne Dupuis, Feb 16 2017
In general, let P(k,n) be the n-th k-gonal number. Then P(k,m+n) = P(k,m) + (k-2)mn + P(k,n). - Charlie Marion, Apr 16 2017
a(n) = A023855(2*n-1) - A023855(2*n-2). - Luc Rousseau, Feb 24 2018
a(n) = binomial(n,2) + n^2. - Pedro Caceres, Jul 28 2019
Product_{n>=2} (1 - 1/a(n)) = 3/5. - Amiram Eldar, Jan 21 2021
(n+1)*(a(n^2) + a(n^2+1) + ... + a(n^2+n)) = n*(a(n^2+n+1) + ... + a(n^2+2n)). - Charlie Marion, Apr 28 2024
EXAMPLE
Illustration of initial terms:
.
. o
. o o
. o o o o
. o o o o o o
. o o o o o o o o o
. o o o o o o o o o o o
. o o o o o o o o o o o o o
. o o o o o o o o o o o o o o
. o o o o o o o o o o o o o o o
.
. 1 5 12 22 35
- Philippe Deléham, Mar 30 2013
MAPLE
A000326 := n->n*(3*n-1)/2: seq(A000326(n), n=0..100);
A000326:=-(1+2*z)/(z-1)**3; # Simon Plouffe in his 1992 dissertation
a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=2*a[n-1]-a[n-2]+3 od: seq(a[n], n=0..50); # Miklos Kristof, Zerinvary Lajos, Feb 18 2008
MATHEMATICA
Table[n (3 n - 1)/2, {n, 0, 60}] (* Stefan Steinerberger, Apr 01 2006 *)
Array[# (3 # - 1)/2 &, 47, 0] (* Zerinvary Lajos, Jul 10 2009 *)
LinearRecurrence[{3, -3, 1}, {0, 1, 5}, 61] (* Harvey P. Dale, Dec 27 2011 *)
pentQ[n_] := IntegerQ[(1 + Sqrt[24 n + 1])/6]; pentQ[0] = True; Select[Range[0, 3200], pentQ@# &] (* Robert G. Wilson v, Mar 31 2014 *)
Join[{0}, Accumulate[Range[1, 312, 3]]] (* Harvey P. Dale, Mar 26 2016 *)
(* For Mathematica 10.4+ *) Table[PolygonalNumber[RegularPolygon[5], n], {n, 0, 46}] (* Arkadiusz Wesolowski, Aug 27 2016 *)
CoefficientList[Series[x (-1 - 2 x)/(-1 + x)^3, {x, 0, 20}], x] (* Eric W. Weisstein, Dec 01 2017 *)
PolygonalNumber[5, Range[0, 20]] (* Eric W. Weisstein, Dec 01 2017 *)
PROG
(PARI) a(n)=n*(3*n-1)/2
(PARI) vector(100, n, n--; binomial(3*n, 2)/3) \\ Altug Alkan, Oct 06 2015
(PARI) is_a000326 = my(s); n==0 || (issquare (24*n+1, &s) && s%6==5) \\ Hugo Pfoertner, Aug 03 2023
(Haskell)
a000326 n = n * (3 * n - 1) `div` 2 -- Reinhard Zumkeller, Jul 07 2012
(Magma) [n*(3*n-1)/2 : n in [0..100]]; // Wesley Ivan Hurt, Oct 15 2015
(GAP) List([0..50], n->n*(3*n-1)/2); # Muniru A Asiru, Mar 18 2019
(Python) # Intended to compute the initial segment of the sequence, not isolated terms.
def aList():
x, y = 1, 1
yield 0
while True:
yield x
x, y = x + y + 3, y + 3
A000326 = aList()
print([next(A000326) for i in range(47)]) # Peter Luschny, Aug 04 2019
CROSSREFS
The generalized pentagonal numbers b*n+3*n*(n-1)/2, for b = 1 through 12, form sequences A000326, A005449, A045943, A115067, A140090, A140091, A059845, A140672, A140673, A140674, A140675, A151542.
Cf. A001318 (generalized pentagonal numbers), A049452, A033570, A010815, A034856, A051340, A004736, A033568, A049453, A002411 (partial sums), A033579.
See A220083 for a list of numbers of the form n*P(s,n)-(n-1)*P(s,n-1), where P(s,n) is the n-th polygonal number with s sides.
Cf. A240137: sum of n consecutive cubes starting from n^3.
Cf. similar sequences listed in A022288.
Partial sums of A016777.
KEYWORD
core,nonn,easy,nice
EXTENSIONS
Incorrect example removed by Joerg Arndt, Mar 11 2010
STATUS
approved
Generalized pentagonal numbers: m*(3*m - 1)/2, m = 0, +-1, +-2, +-3, ....
(Formerly M1336 N0511)
+10
272
0, 1, 2, 5, 7, 12, 15, 22, 26, 35, 40, 51, 57, 70, 77, 92, 100, 117, 126, 145, 155, 176, 187, 210, 222, 247, 260, 287, 301, 330, 345, 376, 392, 425, 442, 477, 495, 532, 551, 590, 610, 651, 672, 715, 737, 782, 805, 852, 876, 925, 950, 1001, 1027, 1080, 1107, 1162, 1190, 1247, 1276, 1335
OFFSET
0,3
COMMENTS
Partial sums of A026741. - Jud McCranie; corrected by Omar E. Pol, Jul 05 2012
From R. K. Guy, Dec 28 2005: (Start)
"Conway's relation twixt the triangular and pentagonal numbers: Divide the triangular numbers by 3 (when you can exactly):
0 1 3 6 10 15 21 28 36 45 55 66 78 91 105 120 136 153 ...
0 - 1 2 .- .5 .7 .- 12 15 .- 22 26 .- .35 .40 .- ..51 ...
.....-.-.....+..+.....-..-.....+..+......-...-.......+....
"and you get the pentagonal numbers in pairs, one of positive rank and the other negative.
"Append signs according as the pair have the same (+) or opposite (-) parity.
"Then Euler's pentagonal number theorem is easy to remember:
"p(n-0) - p(n-1) - p(n-2) + p(n-5) + p(n-7) - p(n-12) - p(n-15) ++-- = 0^n
where p(n) is the partition function, the left side terminates before the argument becomes negative and 0^n = 1 if n = 0 and = 0 if n > 0.
"E.g. p(0) = 1, p(7) = p(7-1) + p(7-2) - p(7-5) - p(7-7) + 0^7 = 11 + 7 - 2 - 1 + 0 = 15."
(End)
The sequence may be used in order to compute sigma(n), as described in Euler's article. - Thomas Baruchel, Nov 19 2003
Number of levels in the partitions of n + 1 with parts in {1,2}.
a(n) is the number of 3 X 3 matrices (symmetrical about each diagonal) M = {{a, b, c}, {b, d, b}, {c, b, a}} such that a + b + c = b + d + b = n + 2, a,b,c,d natural numbers; example: a(3) = 5 because (a,b,c,d) = (2,2,1,1), (1,2,2,1), (1,1,3,3), (3,1,1,3), (2,1,2,3). - Philippe Deléham, Apr 11 2007
Also numbers a(n) such that 24*a(n) + 1 = (6*m - 1)^2 are odd squares: 1, 25, 49, 121, 169, 289, 361, ..., m = 0, +-1, +-2, ... . - Zak Seidov, Mar 08 2008
From Matthew Vandermast, Oct 28 2008: (Start)
Numbers n for which A000326(n) is a member of A000332. Cf. A145920.
This sequence contains all members of A000332 and all nonnegative members of A145919. For values of n such that n*(3*n - 1)/2 belongs to A000332, see A145919. (End)
Starting with offset 1 = row sums of triangle A168258. - Gary W. Adamson, Nov 21 2009
Starting with offset 1 = Triangle A101688 * [1, 2, 3, ...]. - Gary W. Adamson, Nov 27 2009
Starting with offset 1 can be considered the first in an infinite set generated from A026741. Refer to the array in A175005. - Gary W. Adamson, Apr 03 2010
Vertex number of a square spiral whose edges have length A026741. The two axes of the spiral forming an "X" are A000326 and A005449. The four semi-axes forming an "X" are A049452, A049453, A033570 and the numbers >= 2 of A033568. - Omar E. Pol, Sep 08 2011
A general formula for the generalized k-gonal numbers is given by n*((k - 2)*n - k + 4)/2, n=0, +-1, +-2, ..., k >= 5. - Omar E. Pol, Sep 15 2011
a(n) is the number of 3-tuples (w,x,y) having all terms in {0,...,n} and 2*w = 2*x + y. - Clark Kimberling, Jun 04 2012
Generalized k-gonal numbers are second k-gonal numbers and positive terms of k-gonal numbers interleaved, k >= 5. - Omar E. Pol, Aug 04 2012
a(n) is the sum of the largest parts of the partitions of n+1 into exactly 2 parts. - Wesley Ivan Hurt, Jan 26 2013
Conway's relation mentioned by R. K. Guy is a relation between triangular numbers and generalized pentagonal numbers, two sequences from different families, but as triangular numbers are also generalized hexagonal numbers in this case we have a relation between two sequences from the same family. - Omar E. Pol, Feb 01 2013
Start with the sequence of all 0's. Add n to each value of a(n) and the next n - 1 terms. The result is the generalized pentagonal numbers. - Wesley Ivan Hurt, Nov 03 2014
(6k + 1) | a(4k). (3k + 1) | a(4k+1). (3k + 2) | a(4k+2). (6k + 5) | a(4k+3). - Jon Perry, Nov 04 2014
Enge, Hart and Johansson proved: "Every generalised pentagonal number c >= 5 is the sum of a smaller one and twice a smaller one, that is, there are generalised pentagonal numbers a, b < c such that c = 2a + b." (see link theorem 5). - Peter Luschny, Aug 26 2016
The Enge, et al. result for c >= 5 also holds for c >= 2 if 0 is included as a generalized pentagonal number. That is, 2 = 2*1 + 0. - Michael Somos, Jun 02 2018
Suggestion for title, where n actually matches the list and b-file: "Generalized pentagonal numbers: k(n)*(3*k(n) - 1)/2, where k(n) = A001057(n) = [0, 1, -1, 2, -2, 3, -3, ...], n >= 0" - Daniel Forgues, Jun 09 2018 & Jun 12 2018
Generalized k-gonal numbers are the partial sums of the sequence formed by the multiples of (k - 4) and the odd numbers (A005408) interleaved, with k >= 5. - Omar E. Pol, Jul 25 2018
The last digits form a symmetric cycle of length 40 [0, 1, 2, 5, ..., 5, 2, 1, 0], i.e., a(n) == a(n + 40) (mod 10) and a(n) == a(40*k - n - 1) (mod 10), 40*k > n. - Alejandro J. Becerra Jr., Aug 14 2018
Only 2, 5, and 7 are prime. All terms are of the form k*(k+1)/6, where 3 | k or 3 | k+1. For k > 6, the value divisible by 3 must have another factor d > 2, which will remain after the division by 6. - Eric Snyder, Jun 03 2022
8*a(n) is the product of two even numbers one of which is n + n mod 2. - Peter Luschny, Jul 15 2022
a(n) is the dot product of [1, 2, 3, ..., n] and repeat[1, 1/2]. a(5) = 12 = [1, 2, 3, 4, 5] dot [1, 1/2, 1, 1/2, 1] = [1 + 1 + 3 + 2 + 5]. - Gary W. Adamson, Dec 10 2022
Every nonnegative number is the sum of four terms of this sequence [S. Realis]. - N. J. A. Sloane, May 07 2023
REFERENCES
Enoch Haga, A strange sequence and a brilliant discovery, chapter 5 of Exploring prime numbers on your PC and the Internet, first revised ed., 2007 (and earlier ed.), pp. 53-70.
Ross Honsberger, Ingenuity in Mathematics, Random House, 1970, p. 117.
Donald E. Knuth, The Art of Computer Programming, vol. 4A, Combinatorial Algorithms, (to appear), section 7.2.1.4, equation (18).
Ivan Niven and Herbert S. Zuckerman, An Introduction to the Theory of Numbers, 2nd ed., Wiley, NY, 1966, p. 231.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
G. E. Andrews and J. A. Sellers, Congruences for the Fishburn Numbers, arXiv preprint arXiv:1401.5345 [math.NT], 2014.
Paul Barry, On sequences with {-1, 0, 1} Hankel transforms, arXiv preprint arXiv:1205.2565 [math.CO], 2012. - From N. J. A. Sloane, Oct 18 2012
Burkard Polster (Mathologer), The hardest "What comes next?" (Euler's pentagonal formula), Youtube video, Oct 17 2020.
S. Cooper and M. D. Hirschhorn, Results of Hurwitz type for three squares, Discrete Math., Vol. 274, No. 1-3 (2004), pp. 9-24. See P(q).
Andreas Enge, William Hart, and Fredrik Johansson, Short addition sequences for theta functions, arXiv:1608.06810 [math.NT], 2016.
Leonhard Euler, Découverte d'une loi tout extraordinaire des nombres par rapport à la somme de leurs diviseurs, Opera Omnia, Series I, Vol. 2 (1751), pp. 241-253.
Leonhard Euler, On the remarkable properties of the pentagonal numbers, arXiv:math/0505373 [math.HO], 2005.
Leonhard Euler, Observatio de summis divisorum p. 8.
Leonhard Euler, An observation on the sums of divisors, p. 8, arXiv:math/0411587 [math.HO], 2004.
Alex Fink, Richard K. Guy, and Mark Krusemeyer, Partitions with parts occurring at most thrice, Contrib. Discr. Math., Vol. 3, No. 2 (2008), pp. 76-114.
Silvia Heubach and Toufik Mansour, Counting rises, levels and drops in compositions, arXiv:math/0310197 [math.CO], 2003.
Barbara H. Margolius, Permutations with inversions, J. Integ. Seq., Vol. 4 (2001), Article 01.2.4.
Johannes W. Meijer, Euler's Ship on the Pentagonal Sea, pdf and jpg.
Johannes W. Meijer and Manuel Nepveu, Euler's ship on the Pentagonal Sea, Acta Nova, Vol. 4, No. 1 (December 2008), pp. 176-187.
Mircea Merca, The Lambert series factorization theorem, The Ramanujan Journal, January 2017; DOI: 10.1007/s11139-016-9856-3.
Mircea Merca and Maxie D. Schmidt, New Factor Pairs for Factorizations of Lambert Series Generating Functions, arXiv:1706.02359 [math.CO], 2017. See Remark 2.2.
Mircea Merca, Euler’s partition function in terms of 2-adic valuation, Bol. Soc. Mat. Mex. 30, 76 (2024). See p. 3.
Ivan Niven, Formal power series, Amer. Math. Monthly, Vol. 76, No. 8 (1969), pp. 871-889.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992, arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
S. Realis, Question 271, Nouv. Corresp. Math., 4 (1878) 27-29.
Steven J. Schlicker, Numbers Simultaneously Polygonal and Centered Polygonal, Mathematics Magazine, Vol. 84, No. 5 (December 2011), pp. 339-350.
André Weil, Two lectures on number theory, past and present, L'Enseign. Math., Vol. XX (1974), pp. 87-110; Oeuvres III, pp. 279-302.
Eric Weisstein's World of Mathematics, Pentagonal numbers, Partition Function P.
Eric Weisstein's World of Mathematics, Pentagonal Number Theorem.
Keke Zhang, Generalized Catalan numbers, arXiv:2011.09593 [math.CO], 2020.
FORMULA
Euler: Product_{n>=1} (1 - x^n) = Sum_{n=-oo..oo} (-1)^n*x^(n*(3*n - 1)/2).
A080995(a(n)) = 1: complement of A090864; A000009(a(n)) = A051044(n). - Reinhard Zumkeller, Apr 22 2006
Euler transform of length-3 sequence [2, 2, -1]. - Michael Somos, Mar 24 2011
a(-1 - n) = a(n) for all n in Z. a(2*n) = A005449(n). a(2*n - 1) = A000326(n). - Michael Somos, Mar 24 2011. [The extension of the recurrence to negative indices satisfies the signature (1,2,-2,-1,1), but not the definition of the sequence m*(3*m -1)/2, because there is no m such that a(-1) = 0. - Klaus Purath, Jul 07 2021]
a(n) = 3 + 2*a(n-2) - a(n-4). - Ant King, Aug 23 2011
Product_{k>0} (1 - x^k) = Sum_{k>=0} (-1)^k * x^a(k). - Michael Somos, Mar 24 2011
G.f.: x*(1 + x + x^2)/((1 + x)^2*(1 - x)^3).
a(n) = n*(n + 1)/6 when n runs through numbers == 0 or 2 mod 3. - Barry E. Williams
a(n) = A008805(n-1) + A008805(n-2) + A008805(n-3), n > 2. - Ralf Stephan, Apr 26 2003
Sequence consists of the pentagonal numbers (A000326), followed by A000326(n) + n and then the next pentagonal number. - Jon Perry, Sep 11 2003
a(n) = (6*n^2 + 6*n + 1)/16 - (2*n + 1)*(-1)^n/16; a(n) = A034828(n+1) - A034828(n). - Paul Barry, May 13 2005
a(n) = Sum_{k=1..floor((n+1)/2)} (n - k + 1). - Paul Barry, Sep 07 2005
a(n) = A000217(n) - A000217(floor(n/2)). - Pierre CAMI, Dec 09 2007
If n even a(n) = a(n-1) + n/2 and if n odd a(n) = a(n-1) + n, n >= 2. - Pierre CAMI, Dec 09 2007
a(n)-a(n-1) = A026741(n) and it follows that the difference between consecutive terms is equal to n if n is odd and to n/2 if n is even. Hence this is a self-generating sequence that can be simply constructed from knowledge of the first term alone. - Ant King, Sep 26 2011
a(n) = (1/2)*ceiling(n/2)*ceiling((3*n + 1)/2). - Mircea Merca, Jul 13 2012
a(n) = (A008794(n+1) + A000217(n))/2 = A002378(n) - A085787(n). - Omar E. Pol, Jan 12 2013
a(n) = floor((n + 1)/2)*((n + 1) - (1/2)*floor((n + 1)/2) - 1/2). - Wesley Ivan Hurt, Jan 26 2013
From Oskar Wieland, Apr 10 2013: (Start)
a(n) = a(n+1) - A026741(n),
a(n) = a(n+2) - A001651(n),
a(n) = a(n+3) - A184418(n),
a(n) = a(n+4) - A007310(n),
a(n) = a(n+6) - A001651(n)*3 = a(n+6) - A016051(n),
a(n) = a(n+8) - A007310(n)*2 = a(n+8) - A091999(n),
a(n) = a(n+10)- A001651(n)*5 = a(n+10)- A072703(n),
a(n) = a(n+12)- A007310(n)*3,
a(n) = a(n+14)- A001651(n)*7. (End)
a(n) = (A007310(n+1)^2 - 1)/24. - Richard R. Forberg, May 27 2013; corrected by Zak Seidov, Mar 14 2015; further corrected by Jianing Song, Oct 24 2018
a(n) = Sum_{i = ceiling((n+1)/2)..n} i. - Wesley Ivan Hurt, Jun 08 2013
G.f.: x*G(0), where G(k) = 1 + x*(3*k + 4)/(3*k + 2 - x*(3*k + 2)*(3*k^2 + 11*k + 10)/(x*(3*k^2 + 11*k + 10) + (k + 1)*(3*k + 4)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 16 2013
Sum_{n>=1} 1/a(n) = 6 - 2*Pi/sqrt(3). - Vaclav Kotesovec, Oct 05 2016
a(n) = Sum_{i=1..n} numerator(i/2) = Sum_{i=1..n} denominator(2/i). - Wesley Ivan Hurt, Feb 26 2017
a(n) = A000292(A001651(n))/A001651(n), for n>0. - Ivan N. Ianakiev, May 08 2018
a(n) = ((-5 + (-1)^n - 6n)*(-1 + (-1)^n - 6n))/96. - José de Jesús Camacho Medina, Jun 12 2018
a(n) = Sum_{k=1..n} k/gcd(k,2). - Pedro Caceres, Apr 23 2019
Quadrisection. For r = 0,1,2,3: a(r + 4*k) = 6*k^2 + sqrt(24*a(r) + 1)*k + a(r), for k >= 1, with inputs (k = 0) {0,1,2,5}. These are the sequences A049453(k), A033570(k), A033568(k+1), A049452(k+1), for k >= 0, respectively. - Wolfdieter Lang, Feb 12 2021
a(n) = a(n-4) + sqrt(24*a(n-2) + 1), n >= 4. - Klaus Purath, Jul 07 2021
Sum_{n>=1} (-1)^(n+1)/a(n) = 6*(log(3)-1). - Amiram Eldar, Feb 28 2022
a(n) = A002620(n) + A008805(n-1). Gary W. Adamson, Dec 10 2022
E.g.f.: (x*(7 + 3*x)*cosh(x) + (1 + 5*x + 3*x^2)*sinh(x))/8. - Stefano Spezia, Aug 01 2024
EXAMPLE
G.f. = x + 2*x^2 + 5*x^3 + 7*x^4 + 12*x^5 + 15*x^6 + 22*x^7 + 26*x^8 + 35*x^9 + ...
MAPLE
A001318 := -(1+z+z**2)/(z+1)**2/(z-1)**3; # Simon Plouffe in his 1992 dissertation; gives sequence without initial zero
A001318 := proc(n) (6*n^2+6*n+1)/16-(2*n+1)*(-1)^n/16 ; end proc: # R. J. Mathar, Mar 27 2011
MATHEMATICA
Table[n*(n+1)/6, {n, Select[Range[0, 100], Mod[#, 3] != 1 &]}]
Select[Accumulate[Range[0, 200]]/3, IntegerQ] (* Harvey P. Dale, Oct 12 2014 *)
CoefficientList[Series[x (1 + x + x^2) / ((1 + x)^2 (1 - x)^3), {x, 0, 70}], x] (* Vincenzo Librandi, Nov 04 2014 *)
LinearRecurrence[{1, 2, -2, -1, 1}, {0, 1, 2, 5, 7}, 70] (* Harvey P. Dale, Jun 05 2017 *)
a[ n_] := With[{m = Quotient[n + 1, 2]}, m (3 m + (-1)^n) / 2]; (* Michael Somos, Jun 02 2018 *)
PROG
(PARI) {a(n) = (3*n^2 + 2*n + (n%2) * (2*n + 1)) / 8}; /* Michael Somos, Mar 24 2011 */
(PARI) {a(n) = if( n<0, n = -1-n); polcoeff( x * (1 - x^3) / ((1 - x) * (1-x^2))^2 + x * O(x^n), n)}; /* Michael Somos, Mar 24 2011 */
(PARI) {a(n) = my(m = (n+1) \ 2); m * (3*m + (-1)^n) / 2}; /* Michael Somos, Jun 02 2018 */
(Sage)
@CachedFunction
def A001318(n):
if n == 0 : return 0
inc = n//2 if is_even(n) else n
return inc + A001318(n-1)
[A001318(n) for n in (0..59)] # Peter Luschny, Oct 13 2012
(Magma) [(6*n^2 + 6*n + 1 - (2*n + 1)*(-1)^n)/16 : n in [0..50]]; // Wesley Ivan Hurt, Nov 03 2014
(Magma) [(3*n^2 + 2*n + (n mod 2) * (2*n + 1)) div 8: n in [0..70]]; // Vincenzo Librandi, Nov 04 2014
(Haskell)
a001318 n = a001318_list !! n
a001318_list = scanl1 (+) a026741_list -- Reinhard Zumkeller, Nov 15 2015
(GAP) a:=[0, 1, 2, 5];; for n in [5..60] do a[n]:=2*a[n-2]-a[n-4]+3; od; a; # Muniru A Asiru, Aug 16 2018
(Python)
def a(n):
p = n % 2
return (n + p)*(3*n + 2 - p) >> 3
print([a(n) for n in range(60)]) # Peter Luschny, Jul 15 2022
CROSSREFS
Cf. A080995 (characteristic function), A026741 (first differences), A034828 (partial sums), A165211 (mod 2).
Cf. A000326 (pentagonal numbers), A005449 (second pentagonal numbers), A000217 (triangular numbers).
Indices of nonzero terms of A010815, i.e., the (zero-based) indices of 1-bits of the infinite binary word to which the terms of A068052 converge.
Union of A036498 and A036499.
Sequences of generalized k-gonal numbers: this sequence (k=5), A000217 (k=6), A085787 (k=7), A001082 (k=8), A118277 (k=9), A074377 (k=10), A195160 (k=11), A195162 (k=12), A195313 (k=13), A195818 (k=14), A277082 (k=15), A274978 (k=16), A303305 (k=17), A274979 (k=18), A303813 (k=19), A218864 (k=20), A303298 (k=21), A303299 (k=22), A303303 (k=23), A303814 (k=24), A303304 (k=25), A316724 (k=26), A316725 (k=27), A303812 (k=28), A303815 (k=29), A316729 (k=30).
Column 1 of A195152.
Squares in APs: A221671, A221672.
Quadrisection: A049453(k), A033570(k), A033568(k+1), A049452(k+1), k >= 0.
Cf. A002620.
KEYWORD
nonn,easy,nice
STATUS
approved
a(n) = 2*n^2.
+10
228
0, 2, 8, 18, 32, 50, 72, 98, 128, 162, 200, 242, 288, 338, 392, 450, 512, 578, 648, 722, 800, 882, 968, 1058, 1152, 1250, 1352, 1458, 1568, 1682, 1800, 1922, 2048, 2178, 2312, 2450, 2592, 2738, 2888, 3042, 3200, 3362, 3528, 3698, 3872, 4050, 4232, 4418
OFFSET
0,2
COMMENTS
Number of edges of the complete bipartite graph of order 3n, K_{n,2n}. - Roberto E. Martinez II, Jan 07 2002
"If each period in the periodic system ends in a rare gas ..., the number of elements in a period can be found from the ordinal number n of the period by the formula: L = ((2n+3+(-1)^n)^2)/8..." - Nature, Jun 09 1951; Nature 411 (Jun 07 2001), p. 648. This produces the present sequence doubled up.
Let z(1) = i = sqrt(-1), z(k+1) = 1/(z(k)+2i); then a(n) = (-1)*Imag(z(n+1))/Real(z(n+1)). - Benoit Cloitre, Aug 06 2002
Maximum number of electrons in an atomic shell with total quantum number n. Partial sums of A016825. - Jeremy Gardiner, Dec 19 2004
Arithmetic mean of triangular numbers in pairs: (1+3)/2, (6+10)/2, (15+21)/2, ... . - Amarnath Murthy, Aug 05 2005
These numbers form a pattern on the Ulam spiral similar to that of the triangular numbers. - G. Roda, Oct 20 2010
Integral areas of isosceles right triangles with rational legs (legs are 2n and triangles are nondegenerate for n > 0). - Rick L. Shepherd, Sep 29 2009
Even squares divided by 2. - Omar E. Pol, Aug 18 2011
Number of stars when distributed as in the U.S.A. flag: n rows with n+1 stars and, between each pair of these, one row with n stars (i.e., n-1 of these), i.e., n*(n+1)+(n-1)*n = 2*n^2 = A001105(n). - César Eliud Lozada, Sep 17 2012
Apparently the number of Dyck paths with semilength n+3 and an odd number of peaks and the central peak having height n-3. - David Scambler, Apr 29 2013
Sum of the partition parts of 2n into exactly two parts. - Wesley Ivan Hurt, Jun 01 2013
Consider primitive Pythagorean triangles (a^2 + b^2 = c^2, gcd(a, b) = 1) with hypotenuse c (A020882) and respective odd leg a (A180620); sequence gives values c-a, sorted with duplicates removed. - K. G. Stier, Nov 04 2013
Number of roots in the root systems of type B_n and C_n (for n > 1). - Tom Edgar, Nov 05 2013
Area of a square with diagonal 2n. - Wesley Ivan Hurt, Jun 18 2014
This sequence appears also as the first and second member of the quartet [a(n), a(n), p(n), p(n)] of the square of [n, n, n+1, n+1] in the Clifford algebra Cl_2 for n >= 0. p(n) = A046092(n). See an Oct 15 2014 comment on A147973 where also a reference is given. - Wolfdieter Lang, Oct 16 2014
a(n) are the only integers m where (A000005(m) + A000203(m)) = (number of divisors of m + sum of divisors of m) is an odd number. - Richard R. Forberg, Jan 09 2015
a(n) represents the first term in a sum of consecutive integers running to a(n+1)-1 that equals (2n+1)^3. - Patrick J. McNab, Dec 24 2016
Also the number of 3-cycles in the (n+4)-triangular honeycomb obtuse knight graph. - Eric W. Weisstein, Jul 29 2017
Also the Wiener index of the n-cocktail party graph for n > 1. - Eric W. Weisstein, Sep 07 2017
Numbers represented as the palindrome 242 in number base B including B=2 (binary), 3 (ternary) and 4: 242(2)=18, 242(3)=32, 242(4)=50, ... 242(9)=200, 242(10)=242, ... - Ron Knott, Nov 14 2017
a(n) is the square of the hypotenuse of an isosceles right triangle whose sides are equal to n. - Thomas M. Green, Aug 20 2019
The sequence contains all odd powers of 2 (A004171) but no even power of 2 (A000302). - Torlach Rush, Oct 10 2019
From Bernard Schott, Aug 31 2021 and Sep 16 2021: (Start)
Apart from 0, integers such that the number of even divisors (A183063) is odd.
Proof: every n = 2^q * (2k+1), q, k >= 0, then 2*n^2 = 2^(2q+1) * (2k+1)^2; now, gcd(2, 2k+1) = 1, tau(2^(2q+1)) = 2q+2 and tau((2k+1)^2) = 2u+1 because (2k+1)^2 is square, so, tau(2*n^2) = (2q+2) * (2u+1).
The 2q+2 divisors of 2^(2q+1) are {1, 2, 2^2, 2^3, ..., 2^(2q+1)}, so 2^(2q+1) has 2q+1 even divisors {2^1, 2^2, 2^3, ..., 2^(2q+1)}.
Conclusion: these 2q+1 even divisors create with the 2u+1 odd divisors of (2k+1)^2 exactly (2q+1)*(2u+1) even divisors of 2*n^2, and (2q+1)*(2u+1) is odd. (End)
a(n) with n>0 are the numbers with period length 2 for Bulgarian and Mancala solitaire. - Paul Weisenhorn, Jan 29 2022
Number of points at L1 distance = 2 from any given point in Z^n. - Shel Kaphan, Feb 25 2023
REFERENCES
Arthur Beiser, Concepts of Modern Physics, 2nd Ed., McGraw-Hill, 1973.
Martin Gardner, The Colossal Book of Mathematics, Classic Puzzles, Paradoxes and Problems, Chapter 2 entitled "The Calculus of Finite Differences," W. W. Norton and Company, New York, 2001, pages 12-13.
L. B. W. Jolley, "Summation of Series", Dover Publications, 1961, p. 44.
Alain M. Robert, A Course in p-adic Analysis, Springer-Verlag, 2000, p. 213.
LINKS
Lancelot Hogben, Choice and Chance by Cardpack and Chessboard, Vol. 1, Max Parrish and Co, London, 1950, p. 36.
Milan Janjić, Hessenberg Matrices and Integer Sequences, J. Int. Seq. 13 (2010) # 10.7.8.
Milan Janjić, On Restricted Ternary Words and Insets, arXiv:1905.04465 [math.CO], 2019.
Milan Janjic and Boris Petkovic, A Counting Function, arXiv:1301.4550 [math.CO], 2013. - N. J. A. Sloane, Feb 13 2013
Vladimir Ladma, Magic Numbers.
Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv:1406.3081 [math.CO], 2014.
Eric Weisstein's World of Mathematics, Cocktail Party Graph.
Eric Weisstein's World of Mathematics, Graph Cycle.
Eric Weisstein's World of Mathematics, Wiener Index.
FORMULA
a(n) = (-1)^(n+1) * A053120(2*n, 2).
G.f.: 2*x*(1+x)/(1-x)^3.
a(n) = A100345(n, n).
Sum_{n>=1} 1/a(n) = Pi^2/12 =A013661/2. [Jolley eq. 319]. - Gary W. Adamson, Dec 21 2006
a(n) = A049452(n) - A033991(n). - Zerinvary Lajos, Jun 12 2007
a(n) = A016742(n)/2. - Zerinvary Lajos, Jun 20 2008
a(n) = 2 * A000290(n). - Omar E. Pol, May 14 2008
a(n) = 4*n + a(n-1) - 2, n > 0. - Vincenzo Librandi
a(n) = A002378(n-1) + A002378(n). - Joerg M. Schuetze (joerg(AT)cyberheim.de), Mar 08 2010 [Corrected by Klaus Purath, Jun 18 2020]
a(n) = A176271(n,k) + A176271(n,n-k+1), 1 <= k <= n. - Reinhard Zumkeller, Apr 13 2010
a(n) = A007607(A000290(n)). - Reinhard Zumkeller, Feb 12 2011
For n > 0, a(n) = 1/coefficient of x^2 in the Maclaurin expansion of 1/(cos(x)+n-1). - Francesco Daddi, Aug 04 2011
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Artur Jasinski, Nov 24 2011
a(n) = A070216(n,n) for n > 0. - Reinhard Zumkeller, Nov 11 2012
a(n) = A014132(2*n-1,n) for n > 0. - Reinhard Zumkeller, Dec 12 2012
a(n) = A000217(n) + A000326(n). - Omar E. Pol, Jan 11 2013
(a(n) - A000217(k))^2 = A000217(2*n-1-k)*A000217(2*n+k) + n^2, for all k. - Charlie Marion, May 04 2013
a(n) = floor(1/(1-cos(1/n))), n > 0. - Clark Kimberling, Oct 08 2014
a(n) = A251599(3*n-1) for n > 0. - Reinhard Zumkeller, Dec 13 2014
a(n) = Sum_{j=1..n} Sum_{i=1..n} ceiling((i+j-n+4)/3). - Wesley Ivan Hurt, Mar 12 2015
a(n) = A002061(n+1) + A165900(n). - Torlach Rush, Feb 21 2019
E.g.f.: 2*exp(x)*x*(1 + x). - Stefano Spezia, Oct 12 2019
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/24 (A222171). - Amiram Eldar, Jul 03 2020
From Amiram Eldar, Feb 03 2021: (Start)
Product_{n>=1} (1 + 1/a(n)) = sqrt(2)*sinh(Pi/sqrt(2))/Pi.
Product_{n>=1} (1 - 1/a(n)) = sqrt(2)*sin(Pi/sqrt(2))/Pi. (End)
EXAMPLE
a(3) = 18; since 2(3) = 6 has 3 partitions with exactly two parts: (5,1), (4,2), (3,3). Adding all the parts, we get: 1 + 2 + 3 + 3 + 4 + 5 = 18. - Wesley Ivan Hurt, Jun 01 2013
MAPLE
A001105:=n->2*n^2; seq(A001105(k), k=0..100); # Wesley Ivan Hurt, Oct 29 2013
MATHEMATICA
2 Range[0, 50]^2 (* Harvey P. Dale, Jan 23 2011 *)
LinearRecurrence[{3, -3, 1}, {2, 8, 18}, {0, 20}] (* Eric W. Weisstein, Jul 28 2017 *)
2 PolygonalNumber[4, Range[0, 20]] (* Eric W. Weisstein, Jul 28 2017 *)
PROG
(Magma) [2*n^2: n in [0..50] ]; // Vincenzo Librandi, Apr 30 2011
(PARI) a(n) = 2*n^2; \\ Charles R Greathouse IV, Jun 16 2011
(Haskell)
a001105 = a005843 . a000290 -- Reinhard Zumkeller, Dec 12 2012
(Sage) [2*n^2 for n in (0..20)] # G. C. Greubel, Feb 22 2019
(GAP) List([0..50], n->2*n^2); # Muniru A Asiru, Feb 24 2019
CROSSREFS
Cf. numbers of the form n*(n*k-k+4)/2 listed in A226488.
Cf. A058331 and A247375. - Bruno Berselli, Sep 16 2014
Cf. A194715 (4-cycles in the triangular honeycomb obtuse knight graph), A290391 (5-cycles), A290392 (6-cycles). - Eric W. Weisstein, Jul 29 2017
Integers such that: this sequence (the number of even divisors is odd), A028982 (the number of odd divisors is odd), A028983 (the number of odd divisors is even), A183300 (the number of even divisors is even).
KEYWORD
nonn,easy
AUTHOR
Bernd.Walter(AT)frankfurt.netsurf.de
STATUS
approved
a(n) = 6*n + 5.
+10
75
5, 11, 17, 23, 29, 35, 41, 47, 53, 59, 65, 71, 77, 83, 89, 95, 101, 107, 113, 119, 125, 131, 137, 143, 149, 155, 161, 167, 173, 179, 185, 191, 197, 203, 209, 215, 221, 227, 233, 239, 245, 251, 257, 263, 269, 275, 281, 287, 293, 299, 305, 311, 317, 323, 329, 335
OFFSET
0,1
COMMENTS
Apart from initial term(s), dimension of the space of weight 2n cusp forms for Gamma_0(18).
Exponents e such that x^e + x - 1 is reducible.
First differences of A141631. - Paul Curtz, Sep 12 2008
a(n-1), n >= 1, appears as first column in the triangle A239127 related to the Collatz problem. - Wolfdieter Lang, Mar 14 2014
Odd unlucky numbers in A050505. - Fred Daniel Kline, Feb 25 2017
Intersection of A005408 and A016789. - Bruno Berselli, Apr 26 2018
Numbers that are not divisible by their digital root in base 4. - Amiram Eldar, Nov 24 2022
FORMULA
a(n) = A003415(A003415(A125200(n+1)))/2. - Reinhard Zumkeller, Nov 24 2006
A008615(a(n)) = n+1. - Reinhard Zumkeller, Feb 27 2008
a(n) = A007310(2*n+1); complement of A016921 with respect to A007310. - Reinhard Zumkeller, Oct 02 2008
From Klaus Brockhaus, Jan 04 2009: (Start)
G.f.: (5+x)/(1-x)^2.
a(0) = 5; for n > 0, a(n) = a(n-1)+6.
(End)
a(n) = A016921(n)+4 = A016933(n)+3 = A016945(n)+2 = A016957(n)+1. - Klaus Brockhaus, Jan 04 2009
a(n) = floor((12n-1)/2) with offset 1..a(1)=5. - Gary Detlefs, Mar 07 2010
a(n) = 4*(3*n+1) - a(n-1) (with a(0) = 5). - Vincenzo Librandi, Nov 20 2010
a(n) = floor(1/(1/sin(1/n) - n)). - Clark Kimberling, Feb 19 2010
a(n) = 3*Sum_{k = 0..n} binomial(6*n+5, 6*k+2)*Bernoulli(6*k+2). - Michel Marcus, Jan 11 2016
a(n) = A049452(n+1) / (n+1). - Torlach Rush, Nov 23 2018
a(n) = 2*A000217(n+2) - 1 - 2*A000217(n-1). See Twin Triangular Frames illustration. - Leo Tavares, Aug 25 2021
Sum_{n>=0} (-1)^n/a(n) = Pi/6 - sqrt(3)*arccoth(sqrt(3))/3. - Amiram Eldar, Dec 10 2021
MATHEMATICA
6Range[0, 59] + 5 (* or *) NestList[6 + # &, 5, 60] (* Harvey P. Dale, Mar 09 2013 *)
PROG
(Magma) [ 6*n+5: n in [0..55] ]; // Klaus Brockhaus, Jan 04 2009
(PARI) a(n)=6*n+5 \\ Charles R Greathouse IV, Jul 10 2016
(Scala) (1 to 60).map(6 * _ - 1).mkString(", ") // Alonso del Arte, Nov 23 2018
(GAP) List([0..60], n->6*n+5); # Muniru A Asiru, Nov 24 2018
CROSSREFS
Cf. A050505 (unlucky numbers).
Cf. A000217.
KEYWORD
nonn,easy
EXTENSIONS
More terms from Klaus Brockhaus, Jan 04 2009
STATUS
approved
Rhombic matchstick numbers: a(n) = n*(3*n+2).
+10
73
0, 5, 16, 33, 56, 85, 120, 161, 208, 261, 320, 385, 456, 533, 616, 705, 800, 901, 1008, 1121, 1240, 1365, 1496, 1633, 1776, 1925, 2080, 2241, 2408, 2581, 2760, 2945, 3136, 3333, 3536, 3745, 3960, 4181, 4408, 4641, 4880, 5125, 5376, 5633, 5896, 6165, 6440
OFFSET
0,2
COMMENTS
From Floor van Lamoen, Jul 21 2001: (Start)
Write 1,2,3,4,... in a hexagonal spiral around 0, then a(n) is the n-th term of the sequence found by reading the line from 0 in the direction 0,5,.... The spiral begins:
.
85--84--83--82--81--80
. \
56--55--54--53--52 79
/ . \ \
57 33--32--31--30 51 78
/ / . \ \ \
58 34 16--15--14 29 50 77
/ / / . \ \ \ \
59 35 17 5---4 13 28 49 76
/ / / / . \ \ \ \ \
60 36 18 6 0 3 12 27 48 75
/ / / / / / / / / /
61 37 19 7 1---2 11 26 47 74
\ \ \ \ / / / /
62 38 20 8---9--10 25 46 73
\ \ \ / / /
63 39 21--22--23--24 45 72
\ \ / /
64 40--41--42--43--44 71
\ /
65--66--67--68--69--70
(End)
Connection to triangular numbers: a(n) = 4*T_n + S_n where T_n is the n-th triangular number and S_n is the n-th square. - William A. Tedeschi, Sep 12 2010
Also, second octagonal numbers. - Bruno Berselli, Jan 13 2011
Sequence found by reading the line from 0, in the direction 0, 16, ... and the line from 5, in the direction 5, 33, ..., in the square spiral whose vertices are the generalized octagonal numbers A001082. - Omar E. Pol, Jul 18 2012
Let P denote the points from the n X n grid. A(n-1) also coincides with the minimum number of points Q needed to "block" P, that is, every line segment spanned by two points from P must contain one point from Q. - Manfred Scheucher, Aug 30 2018
Also the number of internal edges of an (n+1)*(n+1) "square" of hexagons; i.e., n+1 rows, each of n+1 edge-adjacent hexagons, stacked with minimal overhang. - Jon Hart, Sep 29 2019
For n >= 1, the continued fraction expansion of sqrt(27*a(n)) is [9n+2; {1, 2n-1, 1, 1, 1, 2n-1, 1, 18n+4}]. - Magus K. Chu, Oct 13 2022
LINKS
Ghislain R. Franssens, On a Number Pyramid Related to the Binomial, Deleham, Eulerian, MacMahon and Stirling number triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.4.1.
M. Janjic and B. Petkovic, A Counting Function, arXiv:1301.4550 [math.CO], 2013.
FORMULA
O.g.f.: x*(5+x)/(1-x)^3. - R. J. Mathar, Jan 07 2008
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), with a(0)=0, a(1)=5, a(2)=16. - Harvey P. Dale, May 06 2011
a(n) = a(n-1) + 6*n - 1 (with a(0)=0). - Vincenzo Librandi, Nov 18 2010
For n > 0, a(n)^3 + (a(n)+1)^3 + ... + (a(n)+n)^3 + 2*A000217(n)^2 = (a(n) + n + 1)^3 + ... + (a(n) + 2n)^3; see also A033954. - Charlie Marion, Dec 08 2007
a(n) = Sum_{i=0..n-1} A016969(i) for n > 0. - Bruno Berselli, Jan 13 2011
a(n) = A174709(6*n+4). - Philippe Deléham, Mar 26 2013
a(n) = A001082(2*n). - Michael Turniansky, Aug 24 2013
Sum_{n>=1} 1/a(n) = (9 + sqrt(3)*Pi - 9*log(3))/12 = 0.3794906245574721941... . - Vaclav Kotesovec, Apr 27 2016
a(n) = A002378(n) + A014105(n). - J. M. Bergot, Apr 24 2018
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/sqrt(12) - 3/4. - Amiram Eldar, Jul 03 2020
E.g.f.: exp(x)*x*(5 + 3*x). - Stefano Spezia, Jun 08 2021
From Leo Tavares, Oct 14 2021: (Start)
a(n) = A000290(n) + 4*A000217(n). See Square Stars illustration.
a(n) = A000567(n+2) - A022144(n+1)
a(n) = A005563(n) + A001105(n).
a(n) = A056109(n) - 1. (End)
From Leo Tavares, Oct 06 2022: (Start)
a(n) = A003154(n+1) - A000567(n+1). See Split Stars illustration.
a(n) = A014105(n) + 2*A000217(n). (End)
MATHEMATICA
Table[n*(3n+2), {n, 0, 60}] (* Harvey P. Dale, May 05 2011 *)
LinearRecurrence[{3, -3, 1}, {0, 5, 16}, 60] (* Harvey P. Dale, Jan 19 2016 *)
CoefficientList[Series[x*(5 + x)/(1 - x)^3, {x, 0, 60}], x] (* Stefano Spezia, Sep 01 2018 *)
PROG
(PARI) a(n)=n*(3*n+2) \\ Charles R Greathouse IV, Nov 20 2012
(Magma) [n*(3*n+2) : n in [0..100]]; // Wesley Ivan Hurt, Sep 24 2017
CROSSREFS
Bisection of A001859. See Comments of A135713.
Cf. second n-gonal numbers: A005449, A014105, A147875, A179986, A033954, A062728, A135705.
Cf. A056109.
Cf. A003154.
KEYWORD
nonn,easy,nice
AUTHOR
STATUS
approved
a(n) = n*(4*n-1).
+10
69
0, 3, 14, 33, 60, 95, 138, 189, 248, 315, 390, 473, 564, 663, 770, 885, 1008, 1139, 1278, 1425, 1580, 1743, 1914, 2093, 2280, 2475, 2678, 2889, 3108, 3335, 3570, 3813, 4064, 4323, 4590, 4865, 5148, 5439, 5738, 6045, 6360, 6683, 7014, 7353, 7700, 8055, 8418
OFFSET
0,2
COMMENTS
Write 0,1,2,... in a clockwise spiral; sequence gives numbers on negative x axis. (See illustration in Example.)
This sequence is the number of expressions x generated for a given modulus n in finite arithmetic. For example, n=1 (modulus 1) generates 3 expressions: 0+0=0(mod 1), 0-0=0(mod 1), 0*0=0(mod 1). By subtracting n from 4n^2, we eliminate the counting of those expressions that would include division by zero, which would be, of course, undefined. - David Quentin Dauthier, Nov 04 2007
From Emeric Deutsch, Sep 21 2010: (Start)
a(n) is also the Wiener index of the windmill graph D(3,n).
The windmill graph D(m,n) is the graph obtained by taking n copies of the complete graph K_m with a vertex in common (i.e., a bouquet of n pieces of K_m graphs). The Wiener index of a connected graph is the sum of the distances between all unordered pairs of vertices in the graph.
Example: a(2)=14; indeed if the triangles are OAB and OCD, then, denoting distance by d, we have d(O,A)=d(O,B)=d(A,B)=d(O,C)=d(O,D)=d(C,D)=1 and d(A,C)=d(A,D)=d(B,C)=d(B,D)=2. The Wiener index of D(m,n) is (1/2)n(m-1)[(m-1)(2n-1)+1]. For the Wiener indices of D(4,n), D(5,n), and D(6,n) see A152743, A028994, and A180577, respectively. (End)
Even hexagonal numbers divided by 2. - Omar E. Pol, Aug 18 2011
For n > 0, a(n) equals the number of length 3*n binary words having exactly two 0's with the n first bits having at most one 0. For example a(2) = 14. Words are 010111, 011011, 011101, 011110, 100111, 101011, 101101, 101110, 110011, 110101, 110110, 111001, 111010, 111100. - Franck Maminirina Ramaharo, Mar 09 2018
For n >= 1, the continued fraction expansion of sqrt(a(n)) is [2n-1; {1, 2, 1, 4n-2}]. For n=1, this collapses to [1; {1, 2}]. - Magus K. Chu, Sep 06 2022
REFERENCES
S. M. Ellerstein, The square spiral, J. Recreational Mathematics 29 (#3, 1998) 188; 30 (#4, 1999-2000), 246-250.
R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd ed., 1994, p. 99.
FORMULA
a(n) = A007742(-n) = A074378(2n-1) = A014848(2n).
G.f.: x*(3+5*x)/(1-x)^3. - Michael Somos, Mar 03 2003
a(n) = A014635(n)/2. - Zerinvary Lajos, Jan 16 2007
From Zerinvary Lajos, Jun 12 2007: (Start)
a(n) = A000326(n) + A005476(n).
a(n) = A049452(n) - A001105(n). (End)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. - Harvey P. Dale, Oct 10 2011
a(n) = A118729(8n+2). - Philippe Deléham, Mar 26 2013
From Ilya Gutkovskiy, Dec 04 2016: (Start)
E.g.f.: x*(3 + 4*x)*exp(x).
Sum_{n>=1} 1/a(n) = 3*log(2) - Pi/2 = 0.50864521488... (End)
a(n) = Sum_{i=n..3n-1} i. - Wesley Ivan Hurt, Dec 04 2016
From Franck Maminirina Ramaharo, Mar 09 2018: (Start)
a(n) = binomial(2*n, 2) + 2*n^2.
a(n) = A054556(n+1) - 1. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = (Pi + log(3-2*sqrt(2)))/sqrt(2) - log(2). - Amiram Eldar, Mar 20 2022
EXAMPLE
Clockwise spiral (with sequence terms parenthesized) begins
16--17--18--19
|
15 4---5---6
| | |
(14) (3) (0) 7
| | | |
13 2---1 8
| |
12--11--10---9
MAPLE
[seq(binomial(4*n, 2)/2, n=0..45)]; # Zerinvary Lajos, Jan 16 2007
MATHEMATICA
Table[n*(4*n - 1), {n, 0, 100}] (* Vladimir Joseph Stephan Orlovsky, Jul 06 2011 *)
LinearRecurrence[{3, -3, 1}, {0, 3, 14}, 50] (* Harvey P. Dale, Oct 10 2011 *)
PROG
(PARI) a(n)=4*n^2-n;
CROSSREFS
Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.
Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, A002943 = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.
Sequences obtained by reading alternate terms on the X and Y axes and the two main diagonals of the square spiral: Starting at 0: A035608, A156859, A002378 = 2*A000217, A137932 = 4*A002620; starting at 1: A317186, A267682, A002061, A080335.
KEYWORD
nonn,easy,nice
EXTENSIONS
Two remarks combined into one by Emeric Deutsch, Oct 03 2010
STATUS
approved
a(n) = n*(2*n + 3).
+10
56
0, 5, 14, 27, 44, 65, 90, 119, 152, 189, 230, 275, 324, 377, 434, 495, 560, 629, 702, 779, 860, 945, 1034, 1127, 1224, 1325, 1430, 1539, 1652, 1769, 1890, 2015, 2144, 2277, 2414, 2555, 2700, 2849, 3002, 3159, 3320, 3485, 3654, 3827, 4004, 4185, 4370
OFFSET
0,2
COMMENTS
If Y is a 2-subset of a 2n-set X then, for n >= 1, a(n-1) is the number of (2n-2)-subsets of X intersecting Y. - Milan Janjic, Nov 18 2007
This sequence can also be derived from 1*(2+3)=5, 2*(3+4)=14, 3*(4+5)=27, and so forth. - J. M. Bergot, May 30 2011
Consider the partitions of 2n into exactly two parts. Then a(n) is the sum of all the parts in the partitions of 2n + the number of partitions of 2n + the total number of partition parts of 2n. - Wesley Ivan Hurt, Jul 02 2013
a(n) is the number of self-intersecting points of star polygon {(2*n+3)/(n+1)}. - Bui Quang Tuan, Mar 25 2015
Bisection of A000096. - Omar E. Pol, Dec 16 2016
a(n+1) is the number of function calls required to compute Ackermann's function ack(2,n). - Olivier Gérard, May 11 2018
a(n-1) is the least denominator d > n of the best rational approximation of sqrt(n^2-2) by x/d (see example and PARI code). - Hugo Pfoertner, Apr 30 2019
The number of cells in a loose n X n+1 rectangular spiral where n is even. See loose rectangular spiral image. - Jeff Bowermaster, Aug 05 2019
REFERENCES
Jolley, Summation of Series, Dover (1961).
LINKS
Jeff Bowermaster, Loose Rectangular Spiral
Sergio Falcon, Relationships between Some k-Fibonacci Sequences, Applied Mathematics, 2014, 5, 2226-2234.
Eric Weisstein's World of Mathematics, Star Polygon
FORMULA
a(n) - 1 = A091823(n). - Howard A. Landman, Mar 28 2004
A014107(-n) = a(n), A000384(n+1) = a(n)+1. - Michael Somos, Nov 06 2005
G.f.: x*(5 - x)/(1 - x)^3. - Paul Barry, Feb 27 2003
E.g.f: x*(5 + 2*x)*exp(x). - Michael Somos, Nov 06 2005
a(n) = a(n-1) + 4*n + 1, n > 0. - Vincenzo Librandi, Nov 19 2010
a(n) = 4*A000217(n) + n. - Bruno Berselli, Feb 11 2011
Sum_{n>=1} 1/a(n) = 8/9 -2*log(2)/3 = 0.4267907685155920.. [Jolley eq. 265]
Sum_{n>=1} (-1)^(n+1)/a(n) = 4/9 + log(2)/3 - Pi/6. - Amiram Eldar, Jul 03 2020
From Leo Tavares, Jan 27 2022: (Start)
a(n) = A000384(n+1) - 1. See Hex-tangles illustration.
a(n) = A014105(n) + n*2. See Second Hex-tangles illustration.
a(n) = 2*A002378(n) + n. See Ob-tangles illustration.
a(n) = A005563(n) + 2*A000217(n). See Trap-tangles illustration. (End)
EXAMPLE
a(5-1) = 44: The best approximation of sqrt(5^2-2) = sqrt(23) by x/d with d <= k is 24/5 for all k < 44, but sqrt(23) ~= 211/44 is the first improvement. - Hugo Pfoertner, Apr 30 2019
MAPLE
A014106 := proc(n) n*(2*n+3) ; end proc: # R. J. Mathar, Feb 13 2011
seq(k*(2*k+3), k=1..100); # Wesley Ivan Hurt, Jul 02 2013
MATHEMATICA
Table[n (2 n + 3), {n, 0, 120}] (* Michael De Vlieger, Apr 02 2015 *)
LinearRecurrence[{3, -3, 1}, {0, 5, 14}, 50] (* Harvey P. Dale, Jul 21 2023 *)
PROG
(PARI) a(n)=2*n^2+3*n
(PARI) \\ least denominator > n in best rational approximation of sqrt(n^2-2)
for(n=2, 47, for(k=n, oo, my(m=denominator(bestappr(sqrt(n^2-2), k))); if(m>n, print1(k, ", "); break(1)))) \\ Hugo Pfoertner, Apr 30 2019
(Magma) [n*(2*n+3): n in [0..50]]; // Vincenzo Librandi, Apr 25 2011
CROSSREFS
Cf. A091823. See A110325 for another version.
KEYWORD
nonn,easy
STATUS
approved

Search completed in 0.166 seconds