Displaying 1-10 of 20 results found.
Smallest palindrome greater than n in bases n and n+1.
+10
27
6643, 10, 46, 67, 92, 121, 154, 191, 232, 277, 326, 379, 436, 497, 562, 631, 704, 781, 862, 947, 1036, 1129, 1226, 1327, 1432, 1541, 1654, 1771, 1892, 2017, 2146, 2279, 2416, 2557, 2702, 2851, 3004, 3161, 3322, 3487, 3656, 3829, 4006, 4187, 4372, 4561
COMMENTS
In the following, dig(expr) stands for the digit that represents the value of expression expr, and . stands for concatenation.
As for the naming of this sequence, the trivial 1 digit palindromes 0..dig(n-1) are excluded.
If a number m is palindromic in bases n and n+1, then m has an odd number of digits when represented in base n.
All three digit numbers in base n, that are palindromic in bases n and n+1 are given by:
101_3 22_4 for n = 3,
232_n 1.dig(n).1_(n+1)
343_n 2.dig(n-1).2_(n+1)
up to and including
dig(n-2).dig(n-1).dig(n-2)_n dig(n-3).4.dig(n-3)_(n+1) for n > 3, and
dig(n-1).0.dig(n-1)_n dig(n-3).5.dig(n-3)_(n+1) for n > 4.
Let d_L(n) be the number of integers with L digits in base n (L being odd), being palindromic in bases n and n+1, then:
d_1(n) = n for n >= 2 (see above),
d_3(n) = n-2 for n >= 5 (see above),
d_5(n) = n-1 for n >= 7 and n == 1 (mod 3),
d_5(n) = n-4 for n >= 7 and n in {0, 2} (mod 3), and
it seems that d_7(n) is of order O(n^2*log(n)) for n large enough. (End)
FORMULA
a(n) = 2n^2 + 3n + 2 for n >= 4 (which is 232_n and 1n1_(n+1)).
G.f.: x^2*(6643 - 19919*x + 19945*x^2 - 6684*x^3 + 19*x^4) / (1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>6.
(End)
EXAMPLE
a(14) = 2*14^2 + 3*14 + 2 = 436, which is 232_14 and 1e1_15.
MATHEMATICA
Do[ k = n + 2; While[ RealDigits[ k, n + 1 ][ [ 1 ] ] != Reverse[ RealDigits[ k, n + 1 ][ [ 1 ] ] ] || RealDigits[ k, n ][ [ 1 ] ] != Reverse[ RealDigits[ k, n ][ [ 1 ] ] ], k++ ]; Print[ k ], {n, 2, 75} ]
palQ[n_Integer, base_Integer] := Block[{idn = IntegerDigits[n, base]}, idn == Reverse[idn]]; f[n_] := Block[{k = n + 2}, While[ !palQ[k, n] || !palQ[k, n + 1], k++ ]; k]; Table[ f[n], {n, 2, 48}] (* Robert G. Wilson v, Sep 29 2004 *)
PROG
(PARI) isok(j, n) = my(da=digits(j, n), db=digits(j, n+1)); (Vecrev(da)==da) && (Vecrev(db)==db);
a(n) = {my(j = n); while(! isok(j, n), j++); j; } \\ Michel Marcus, Nov 16 2017
(PARI) Vec(x^2*(6643 - 19919*x + 19945*x^2 - 6684*x^3 + 19*x^4) / (1 - x)^3 + O(x^50)) \\ Colin Barker, Jun 30 2019
CROSSREFS
Cf. A029965, A029966, A048269, A060792, A097928, A097929, A097930, A097931, A099145, A099146, A099147, A099153.
AUTHOR
Ulrich Schimke (ulrschimke(AT)aol.com)
Numbers in base 10 that are palindromic in bases 8 and 9.
+10
21
0, 1, 2, 3, 4, 5, 6, 7, 154, 227, 300, 373, 446, 455, 11314, 12547, 17876, 27310, 889435, 894619, 899803, 926371, 1257716, 1262900, 1268084, 1273268, 1294652, 1368461, 1373645, 1405397, 2067519, 63367795, 71877268, 98383349
EXAMPLE
227 is in the sequence because 227_10 = 343_8 = 272_9.
MATHEMATICA
palQ[n_Integer, base_Integer] := Block[{idn = IntegerDigits[n, base]}, idn == Reverse[ idn]]; Select[ Range[ 250000000], palQ[ #, 8] && palQ[ #, 9] &]
CROSSREFS
Cf. A048268, A060792, A097928, A097929, A097930, A097931, A099145, A029965, A029966, A099147, A099153.
Palindromic numbers in bases 2 and 8 written in base 10.
+10
17
0, 1, 3, 5, 7, 9, 27, 45, 63, 65, 73, 195, 219, 325, 341, 365, 381, 455, 471, 495, 511, 513, 585, 1539, 1755, 2565, 2709, 2925, 3069, 3591, 3735, 3951, 4095, 4097, 4161, 4617, 4681, 12291, 12483, 13851, 14043, 20485, 20613, 20805, 20933, 21525, 21653, 21845, 21973, 23085, 23213, 23405, 23533, 24125, 24253, 24445, 24573, 28679, 28807, 28999, 29127, 29719, 29847
EXAMPLE
2709 is in the sequence because 2709_10 = 5225_8 = 101010010101_2.
MATHEMATICA
(* first load nthPalindromeBase from A002113 *) palQ[n_Integer, base_Integer] := Block[{}, Reverse[ idn = IntegerDigits[n, base]] == idn]; k = 0; lst = {}; While[k < 21000000, pp = nthPalindromeBase[k, 8]; If[palQ[pp, 2], AppendTo[lst, pp]; Print[pp]]; k++]; lst
b1=2; b2=8; lst={}; Do[d1=IntegerDigits[n, b1]; d2=IntegerDigits[n, b2]; If[d1==Reverse[d1]&&d2==Reverse[d2], AppendTo[lst, n]], {n, 0, 30000}]; lst (* Vincenzo Librandi, Jul 17 2015 *)
CROSSREFS
Cf. A048268, A060792, A097856, A097928, A182232, A259374, A097929, A182233, A259375, A259376,
A097930, A182234, A259377, A259378, A249156, A097931, A259380, A259381, A259382, A259383,
A259384, A099145, A259385, A259386, A259387, A259388, A259389, A259390, A099146, A007632,
A007633, A029961, A029962, A029963, A029964, A029804, A029965, A029966, A029967, A029968,
Palindromic numbers in bases 3 and 5 written in base 10.
+10
16
0, 1, 2, 4, 26, 52, 1066, 1667, 2188, 32152, 67834, 423176, 437576, 14752936, 26513692, 27711772, 33274388, 320785556, 1065805109, 9012701786, 9256436186, 12814126552, 18814619428, 201241053056, 478999841578, 670919564984, 18432110906024, 158312796835916, 278737550525722
COMMENTS
0 is only 0 regardless of the base,
1 is only 1 regardless of the base,
2 on the other hand is also 10 in base 2, denoted as 10_2,
3 is 3 in all bases greater than 3, but is 11_2 and 10_3.
EXAMPLE
52 is in the sequence because 52_10 = 202_5 = 1221_3.
MATHEMATICA
(* first load nthPalindromeBase from A002113 *) palQ[n_Integer, base_Integer] := Block[{}, Reverse[ idn = IntegerDigits[n, base]] == idn]; k = 0; lst = {}; While[k < 21000000, pp = nthPalindromeBase[k, 5]; If[ palQ[pp, 3], AppendTo[lst, pp]; Print[pp]]; k++]; lst
b1=3; b2=5; lst={}; Do[d1=IntegerDigits[n, b1]; d2=IntegerDigits[n, b2]; If[d1==Reverse[d1]&&d2==Reverse[d2], AppendTo[lst, n]], {n, 0, 10000000}]; lst (* Vincenzo Librandi, Jul 15 2015 *)
PROG
(Python)
def nextpal(n, b): # returns the palindromic successor of n in base b
....m, pl = n+1, 0
....while m > 0:
........m, pl = m//b, pl+1
....if n+1 == b**pl:
........pl = pl+1
....n = (n//(b**(pl//2))+1)//(b**(pl%2))
....m = n
....while n > 0:
........m, n = m*b+n%b, n//b
....return m
n, a3, a5 = 0, 0, 0
while n <= 20000:
....if a3 < a5:
........a3 = nextpal(a3, 3)
....elif a5 < a3:
........a5 = nextpal(a5, 5)
....else: # a3 == a5
........print(n, a3)
........a3, a5, n = nextpal(a3, 3), nextpal(a5, 5), n+1
CROSSREFS
Cf. A048268, A060792, A097856, A097928, A182232, A259374, A097929, A182233, A259375, A259376, A097930, A182234, A259377, A259378, A249156, A097931, A259380- A259384, A099145, A259385- A259390, A099146, A007632, A007633, A029961- A029964, A029804, A029965- A029970, A029731, A097855, A250408- A250411, A099165, A250412.
Palindromic numbers in bases 3 and 6 written in base 10.
+10
16
0, 1, 2, 4, 28, 80, 160, 203, 560, 644, 910, 34216, 34972, 74647, 87763, 122420, 221068, 225064, 6731644, 6877120, 6927700, 7723642, 8128762, 8271430, 77894071, 78526951, 539212009, 28476193256, 200267707484, 200316968444, 201509576804, 201669082004, 231852949304, 232018753064, 232039258376, 333349186006, 2947903946317, 5816975658914, 5817003372578, 11610051837124, 27950430282103, 81041908142188
COMMENTS
Agrees with the number of minimal dominating sets of the halved cube graph Q_n/2 for at least n=1 to 5. - Eric W. Weisstein, Sep 06 2021
EXAMPLE
28 is in the sequence because 28_10 = 44_6 = 1001_3.
MATHEMATICA
(* first load nthPalindromeBase from A002113 *) palQ[n_Integer, base_Integer] := Block[{}, Reverse[ idn = IntegerDigits[n, base]] == idn]; k = 0; lst = {}; While[k < 21000000, pp = nthPalindromeBase[k, 6]; If[palQ[pp, 3], AppendTo[lst, pp]; Print[pp]]; k++]; lst
b1=3; b2=6; lst={}; Do[d1=IntegerDigits[n, b1]; d2=IntegerDigits[n, b2]; If[d1==Reverse[d1]&&d2==Reverse[d2], AppendTo[lst, n]], {n, 0, 10000000}]; lst (* Vincenzo Librandi, Jul 15 2015 *)
CROSSREFS
Cf. A048268, A060792, A097856, A097928, A182232, A259374, A097929, A182233, A259375, A259376, A097930, A182234, A259377, A259378, A249156, A097931, A259380, A259381, A259382, A259383, A259384, A099145, A259385, A259386, A259387, A259388, A259389, A259390, A099146, A007632, A007633, A029961, A029962, A029963, A029964, A029804, A029965, A029966, A029967, A029968, A029969, A029970, A029731, A097855, A250408, A250409, A250410, A250411, A099165, A250412.
Palindromic numbers in bases 4 and 6 written in base 10.
+10
16
0, 1, 2, 3, 5, 21, 55, 215, 819, 1885, 7373, 7517, 12691, 14539, 69313, 196606, 1856845, 3314083, 5494725, 33348861, 223892055, 231755895, 322509617, 3614009815, 4036503055, 4165108015, 9233901154, 9330794722, 12982275395, 107074105033, 186398221946, 270747359295, 401478741365, 1809863435625, 2281658774290, 11931403417210, 12761538567790, 12887266632430, 15822654274715, 30255762326713, 46164680151002, 323292550693473, 329536806222753
EXAMPLE
55 is in the sequence because 55_10 = 131_6 = 313_4.
MATHEMATICA
(* first load nthPalindromeBase from A002113 *) palQ[n_Integer, base_Integer] := Block[{}, Reverse[ idn = IntegerDigits[n, base]] == idn]; k = 0; lst = {}; While[k < 21000000, pp = nthPalindromeBase[k, 6]; If[palQ[pp, 4], AppendTo[lst, pp]; Print[pp]]; k++]; lst
CROSSREFS
Cf. A048268, A060792, A097856, A097928, A182232, A259374, A097929, A182233, A259375, A259376,
A097930, A182234, A259377, A259378, A249156, A097931, A259380, A259381, A259382, A259383,
A259384, A099145, A259385, A259386, A259387, A259388, A259389, A259390, A099146, A007632,
A007633, A029961, A029962, A029963, A029964, A029804, A029965, A029966, A029967, A029968,
Palindromic numbers in bases 3 and 7 written in base 10.
+10
16
0, 1, 2, 4, 8, 16, 40, 100, 121, 142, 164, 242, 328, 400, 1312, 8200, 9103, 14762, 54008, 76024, 108016, 112048, 233920, 532900, 639721, 741586, 2585488, 3316520, 11502842, 24919360, 35664908, 87001616, 184827640, 4346524576, 5642510512, 11641189600, 65304259157, 68095147754, 469837033600, 830172165614, 17136683996456, 21772277941544, 22666883572232, 45221839119556
EXAMPLE
142 is in the sequence because 142_10 = 262_7 = 12021_3.
MATHEMATICA
(* first load nthPalindromeBase from A002113 *) palQ[n_Integer, base_Integer] := Block[{}, Reverse[ idn = IntegerDigits[n, base]] == idn]; k = 0; lst = {}; While[k < 21000000, pp = nthPalindromeBase[k, 7]; If[palQ[pp, 3], AppendTo[lst, pp]; Print[pp]]; k++]; lst
b1=3; b2=7; lst={}; Do[d1=IntegerDigits[n, b1]; d2=IntegerDigits[n, b2]; If[d1==Reverse[d1] && d2==Reverse[d2], AppendTo[lst, n]], {n, 0, 10000000}]; lst (* Vincenzo Librandi, Jul 17 2015 *)
CROSSREFS
Cf. A007632, A007633, A029731, A029804, A029961, A029962, A029963, A029964, A029965, A029966, A029967, A029968, A029969, A029970, A048268, A060792, A097855, A097856, A097928, A097929, A097930, A097931, A099145, A099146, A099165, A182232, A182233, A182234, A250408, A250409, A250410, A250411, A250412, A259374, A259375, A259376, A259377, A259378, A249156, A259380, A259381, A259382, A259383, A259384, A259385, A259386, A259387, A259388, A259389, A259390.
Palindromic numbers in bases 4 and 7 written in base 10.
+10
16
0, 1, 2, 3, 5, 85, 150, 235, 257, 8802, 9958, 13655, 14811, 189806, 428585, 786435, 9262450, 31946605, 34179458, 387973685, 424623193, 430421657, 640680742, 742494286, 1692399385, 22182595205, 30592589645, 1103782149121, 1134972961921, 1871644872505, 2047644601565, 3205015384750, 3304611554563, 3628335729863, 4467627704385
EXAMPLE
85 is in the sequence because 85_10 = 151_7 = 1111_4.
MATHEMATICA
(* first load nthPalindromeBase from A002113 *) palQ[n_Integer, base_Integer] := Block[{}, Reverse[ idn = IntegerDigits[n, base]] == idn]; k = 0; lst = {}; While[k < 21000000, pp = nthPalindromeBase[k, 7]; If[palQ[pp, 4], AppendTo[lst, pp]; Print[pp]]; k++]; lst
b1=4; b2=7; lst={}; Do[d1=IntegerDigits[n, b1]; d2=IntegerDigits[n, b2]; If[d1==Reverse[d1]&&d2==Reverse[d2], AppendTo[lst, n]], {n, 0, 10000000}]; lst (* Vincenzo Librandi, Jul 17 2015 *)
CROSSREFS
Cf. A048268, A060792, A097856, A097928, A182232, A259374, A097929, A182233, A259375, A259376, A097930, A182234, A259377, A259378, A249156, A097931, A259380, A259381, A259382, A259383, A259384, A099145, A259385, A259386, A259387, A259388, A259389, A259390, A099146, A007632, A007633, A029961, A029962, A029963, A029964, A029804, A029965, A029966, A029967, A029968, A029969, A029970, A029731, A097855, A250408, A250409, A250410, A250411, A099165, A250412.
Palindromic numbers in bases 4 and 8 written in base 10.
+10
16
0, 1, 2, 3, 5, 63, 65, 105, 130, 170, 195, 235, 325, 341, 357, 373, 4095, 4097, 4161, 4225, 4289, 6697, 6761, 6825, 6889, 8194, 8258, 8322, 8386, 10794, 10858, 10922, 10986, 12291, 12355, 12419, 12483, 14891, 14955, 15019, 15083, 20485, 20805, 21525, 21845
EXAMPLE
235 is in the sequence because 235_10 = 353_8 = 3223_4.
MATHEMATICA
(* first load nthPalindromeBase from A002113 *) palQ[n_Integer, base_Integer] := Block[{}, Reverse[ idn = IntegerDigits[n, base]] == idn]; k = 0; lst = {}; While[k < 21000000, pp = nthPalindromeBase[k, 8]; If[palQ[pp, 4], AppendTo[lst, pp]; Print[pp]]; k++]; lst
b1=4; b2=8; lst={}; Do[d1=IntegerDigits[n, b1]; d2=IntegerDigits[n, b2]; If[d1==Reverse[d1]&&d2==Reverse[d2], AppendTo[lst, n]], {n, 0, 30000}]; lst (* Vincenzo Librandi, Jul 17 2015 *)
CROSSREFS
Cf. A048268, A060792, A097856, A097928, A182232, A259374, A097929, A182233, A259375, A259376, A097930, A182234, A259377, A259378, A249156, A097931, A259380, A259381, A259382, A259383, A259384, A099145, A259385, A259386, A259387, A259388, A259389, A259390, A099146, A007632, A007633, A029961, A029962, A029963, A029964, A029804, A029965, A029966, A029967, A029968, A029969, A029970, A029731, A097855, A250408, A250409, A250410, A250411, A099165, A250412.
Palindromic numbers in bases 6 and 8 written in base 10.
+10
16
0, 1, 2, 3, 4, 5, 7, 154, 178, 203, 5001, 7409, 315721, 567434, 1032507, 46823602, 56939099, 84572293, 119204743, 1420737297, 1830945641, 2115191225, 3286138051, 3292861699, 4061216947, 8094406311, 43253138565, 80375377033, 88574916241, 108218625313, 116606986537, 116755331881, 166787896538, 186431605610, 318743407660, 396619220597, 1756866976011, 4920262093249, 11760498311914, 15804478291811, 15813860880803, 24722285628901, 33004205249575, 55584258482529, 371039856325905, 401205063672537, 516268720555889
EXAMPLE
178 is in the sequence because 178_10 = 262_8 = 454_6.
MATHEMATICA
(* first load nthPalindromeBase from A002113 *) palQ[n_Integer, base_Integer] := Block[{}, Reverse[ idn = IntegerDigits[n, base]] == idn]; k = 0; lst = {}; While[k < 21000000, pp = nthPalindromeBase[k, 8]; If[palQ[pp, 6], AppendTo[lst, pp]; Print[pp]]; k++]; lst
b1=6; b2=8; lst={}; Do[d1=IntegerDigits[n, b1]; d2=IntegerDigits[n, b2]; If[d1==Reverse[d1]&&d2==Reverse[d2], AppendTo[lst, n]], {n, 0, 10000000}]; lst (* Vincenzo Librandi, Jul 17 2015 *)
CROSSREFS
Cf. A048268, A060792, A097856, A097928, A182232, A259374, A097929, A182233, A259375, A259376, A097930, A182234, A259377, A259378, A249156, A097931, A259380, A259381, A259382, A259383, A259384, A099145, A259385, A259386, A259387, A259388, A259389, A259390, A099146, A007632, A007633, A029961, A029962, A029963, A029964, A029804, A029965, A029966, A029967, A029968, A029969, A029970, A029731, A097855, A250408, A250409, A250410, A250411, A099165, A250412.
Search completed in 0.015 seconds
|