Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Search: a155203 -id:a155203
     Sort: relevance | references | number | modified | created      Format: long | short | data
G.f.: A(x) = exp( Sum_{n>=1} 2^(n^2) * x^n/n ), a power series in x with integer coefficients.
+10
49
1, 2, 10, 188, 16774, 6745436, 11466849412, 80444398636280, 2306003967992402758, 268654794629082985019564, 126765597346260977505891041836, 241678070948246232010898235031930952, 1858395916567787793818891330877931472153500, 57560683587056536617649234722821582390470430186648
OFFSET
0,2
COMMENTS
More generally, it appears that for m integer, exp( Sum_{n >= 1} m^(n^2) * x^n/n ) is a power series in x with integer coefficients.
This is correct: if b(n) = m^(n^2) then by the little Fermat theorem the Gauss congruences hold: b(n*p^k) == b(n*p^(k-1)) ( mod p^k ) for all prime p and positive integers n and k. Then apply Stanley, Ch. 5, Ex. 5.2(a). - Peter Bala, Dec 25 2019
Conjecture: highest exponent of 2 dividing a(n) = A000120(n) = number of 1's in binary expansion of n, so that a(n)/2^A000120(n) is odd for n >= 0. - Paul D. Hanna, Sep 01 2009
REFERENCES
R. P. Stanley. Enumerative combinatorics, Vol. 2. Volume 62 of Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 1999.
LINKS
Sawian Jaidee, Patrick Moss, Tom Ward, Time-changes preserving zeta functions, arXiv:1809.09199 [math.DS], 2018.
FORMULA
Equals column 0 of triangle A155810.
G.f. satisfies: 2*A(x)*A(4x) + 8*x*A(x)*A'(4x) - A'(x)*A(4x) = 0. - Paul D. Hanna, Feb 24 2009
From Paul D. Hanna, Mar 11 2009: (Start)
The differential equation implies recurrence:
n*a(n) = 2*a(n-1) + sum(k = 1, n - 1, 4^k*a(k)*[2*(k+1)*a(n-1-k) - (n-k)*a(n-k)] for n > 0, with a(0) = 1.
G.f. A(x) generates A156631:
A156631(n) = [x^n] A(x)^(2^n) for n >= 0, where the g.f. of A156631 = Sum_{n >= 0} [Sum_{k >= 1} (2^n*2^k*x)^k/k]^n/n!. (End)
a(n) = (1/n)*Sum_{k = 1..n} 2^(k^2)*a(n-k), a(0) = 1. - Vladeta Jovovic, Feb 04 2009
Euler transform of A159034. - Vladeta Jovovic, Apr 02 2009
a(n) = B_n( 0!*2^(1^2), 1!*2^(2^2), 2!*2^(3^2), ..., (n-1)!*2^(n^2) ) / n!, where B_n() is the complete Bell polynomial. - Max Alekseyev, Oct 10 2014
a(n) ~ 2^(n^2) / n. - Vaclav Kotesovec, Oct 09 2019
EXAMPLE
G.f.: A(x) = 1 + 2*x + 10*x^2 + 188*x^3 + 16774*x^4 + 6745436*x^5 +...
log(A(x)) = 2*x + 2^4*x^2/2 + 2^9*x^3/3 + 2^16*x^4/4 + 2^25*x^5/5 +...
MAPLE
seq(coeff(series(exp(add(2^(k^2)*x^k/k, k=1..n)), x, n+1), x, n), n = 0 .. 15); # Muniru A Asiru, Dec 19 2018
MATHEMATICA
nmax = 14; Exp[Sum[2^(n^2) x^n/n, {n, 1, nmax}]] + O[x]^nmax // CoefficientList[#, x]& (* Jean-François Alcover, Feb 14 2019 *)
PROG
(PARI) {a(n)=polcoeff(exp(sum(m=1, n+1, 2^(m^2)*x^m/m)+x*O(x^n)), n)}
(PARI) {a(n)=if(n==0, 1, (1/n)*(2*a(n-1) + sum(k=1, n-1, 4^k*a(k)*(2*(k+1)*a(n-1-k) - (n-k)*a(n-k)))))} \\ Paul D. Hanna, Mar 11 2009
(PARI) {a(n)=if(n==0, 1, (1/n)*sum(k=1, n, 2^(k^2)*a(n-k)))} \\ Paul D. Hanna, Sep 01 2009
CROSSREFS
Cf. A155201, A155202, A155810 (triangle), variants: A155203, A155207.
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 04 2009
STATUS
approved
G.f.: A(x) = exp( Sum_{n>=1} (3^n + 1)^n * x^n/n ), a power series in x with integer coefficients.
+10
7
1, 4, 58, 7528, 11333974, 173018964568, 25223063625377572, 34295288559321731710864, 429734241619476967064512081894, 49292144502053186639397817183561560472
OFFSET
0,2
COMMENTS
More generally, for m integer, exp( Sum_{n>=1} (m^n + y)^n * x^n/n ) is a power series in x and y with integer coefficients.
FORMULA
Equals row sums of triangle A155812.
EXAMPLE
G.f.: A(x) = 1 + 4*x + 58*x^2 + 7528*x^3 + 11333974*x^4 + 173018964568*x^5 +...
log(A(x)) = 4*x + 10^2*x^2/2 + 28*x^3/3 + 82^4*x^4/4 + 244^5*x^5/5 +...
PROG
(PARI) {a(n)=polcoeff(exp(sum(m=1, n+1, (3^m+1)^m*x^m/m)+x*O(x^n)), n)}
CROSSREFS
Cf. A155203, A155205, A155206, A155812 (triangle), variants: A155201, A155208.
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 04 2009
STATUS
approved
G.f.: A(x) = exp( Sum_{n>=1} (3^n - 1)^n * x^n/n ), a power series in x with integer coefficients.
+10
6
1, 2, 34, 5924, 10252294, 166020197708, 24810918565918804, 34076399079565985138408, 428687477154543524080261047622, 49247086840315416213775472777558582540
OFFSET
0,2
COMMENTS
More generally, for m integer, exp( Sum_{n>=1} (m^n + y)^n * x^n/n ) is a power series in x and y with integer coefficients.
EXAMPLE
G.f.: A(x) = 1 + 2*x + 34*x^2 + 5924*x^3 + 10252294*x^4 +...
log(A(x)) = 2*x + 8^2*x^2/2 + 26^3*x^3/3 + 80^4*x^4/4 + 242^5*x^5/5 +...
PROG
(PARI) {a(n)=polcoeff(exp(sum(m=1, n+1, (3^m-1)^m*x^m/m)+x*O(x^n)), n)}
CROSSREFS
Cf. A155203, A155204, A155206, A155812 (triangle), variants: A155202, A155209.
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 04 2009
STATUS
approved
G.f.: A(x) = exp( Sum_{n>=1} 4^(n^2) * x^n/n ), a power series in x with integer coefficients.
+10
6
1, 4, 136, 87904, 1074100576, 225184288253824, 787061981348092400896, 45273238870711805132010916864, 42535296046210357883346895894694749696, 649556283428320264374891976653586736162144180224
OFFSET
0,2
COMMENTS
More generally, for m integer, exp( Sum_{n>=1} m^(n^2) * x^n/n ) is a power series in x with integer coefficients.
FORMULA
G.f. satisfies: A'(x)/A(x) = 4 + 64*x*A'(16*x)/A(16*x). - Paul D. Hanna, Nov 15 2022
EXAMPLE
G.f.: A(x) = 1 + 4*x + 136*x^2 + 87904*x^3 + 1074100576*x^4 +...
log(A(x)) = 4*x + 4^4*x^2/2 + 4^9*x^3/3 + 4^16*x^4/4 + 4^25*x^5/5 +...
PROG
(PARI) {a(n)=polcoeff(exp(sum(m=1, n+1, 4^(m^2)*x^m/m)+x*O(x^n)), n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 04 2009
STATUS
approved
Triangle, read by rows, where g.f.: A(x,y) = exp( Sum_{n>=1} (3^n + y)^n * x^n/n ) is a power series in x and y with integer coefficients.
+10
5
1, 3, 1, 45, 12, 1, 6687, 801, 39, 1, 10782369, 540720, 10764, 120, 1, 169490304819, 3499254081, 29275956, 129348, 363, 1, 25016281429306077, 206071208583660, 709664882337, 1321144632, 1459773, 1092, 1, 34185693516532070487615
OFFSET
0,2
COMMENTS
More generally, for m integer, exp( Sum_{n>=1} (m^n + y)^n * x^n/n ) is a power series in x and y with integer coefficients.
FORMULA
G.f.: A(x,y) = Sum_{n>=0} Sum_{k>=0} T(n,k)*x^n*y^k.
EXAMPLE
G.f.: A(x,y) = 1 + (3 + y)x + (45 + 12y + y^2)x^2 + (6687 + 801y + 39y^2 + y^3)x^3 +...
Triangle begins:
1;
3, 1;
45, 12, 1;
6687, 801, 39, 1;
10782369, 540720, 10764, 120, 1;
169490304819, 3499254081, 29275956, 129348, 363, 1;
25016281429306077, 206071208583660, 709664882337, 1321144632, 1459773, 1092, 1;
34185693516532070487615, 109444624780070083617, 150302858159634327, 115097787387369, 53628299415, 15815241, 3279, 1; ...
PROG
(PARI) {T(n, k)=polcoeff(polcoeff(exp(sum(m=1, n+1, (3^m+y)^m*x^m/m)+x*O(x^n)), n, x), k, y)}
CROSSREFS
Cf. A155203 (column 0), A155204 (row sums), A155813 (column 1).
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Feb 04 2009
STATUS
approved
G.f.: A(x) = exp( Sum_{n>=1} (3^n - 1)^n/2^(n-1) * x^n/n ), a power series in x with integer coefficients.
+10
4
1, 2, 18, 1498, 1283090, 10377556482, 775351592888722, 532444511048570910746, 3349121447720205394546014978, 192371436319107536207473420480152034, 100642626897912335112447860229547933463000450
OFFSET
0,2
COMMENTS
More generally, for m integer, exp( Sum_{n>=1} (m^n - 1)^n/(m-1)^(n-1) * x^n/n ) is a power series in x with integer coefficients.
Note that g.f. exp( Sum_{n>=1} (3^n - 1)^n/2^n * x^n/n ) has fractional coefficients as a power series in x.
EXAMPLE
G.f.: A(x) = 1 + 2*x + 18*x^2 + 1498*x^3 + 1283090*x^4 + 10377556482*x^5 +...
log(A(x)) = 2*x + 8^2/2*x^2/2 + 26^3/2^2*x^3/3 + 80^4/2^3*x^4/4 + 242^5/2^4*x^5/5 +...
PROG
(PARI) {a(n)=polcoeff(exp(sum(m=1, n+1, (3^m-1)^m/2^(m-1)*x^m/m)+x*O(x^n)), n)}
CROSSREFS
Cf. A155203, A155204, A155205, A155812 (triangle), variant: A155210.
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 04 2009
STATUS
approved
G.f.: exp( Sum_{n>=1} (3^n + A(x))^n * x^n/n ).
+10
3
1, 4, 62, 7646, 11346032, 173032723944, 25223251091617644, 34295314615208803660344, 429734276354140075492905291038, 49292144933883713910495181570024546094, 51546480948489890934875222750204184228031911158
OFFSET
0,2
EXAMPLE
G.f.: A(x) = 1 + 4*x + 62*x^2 + 7646*x^3 + 11346032*x^4 + 173032723944*x^5 +...
where
log(A(x)) = (3 + A(x))*x + (3^2 + A(x))^2*x^2/2 + (3^3 + A(x))^3*x^3/3 + (3^4 + A(x))^4*x^4/4 +...
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, (3^m+A+x*O(x^n))^m*x^m/m))); polcoeff(A, n)}
CROSSREFS
KEYWORD
nonn,changed
AUTHOR
Paul D. Hanna, Dec 21 2011
STATUS
approved
G.f.: A(x) = exp( Sum_{n>=1} 3^[(n^2+1)/2]*x^n/n ), a power series in x with integer coefficients.
+10
2
1, 3, 9, 99, 1917, 324567, 65546253, 121237985007, 231991261827633, 4053251131970038227, 71801958531451566872745, 11561440390042361895766055043, 1877401313066393527954697682635421
OFFSET
0,2
FORMULA
a(n) = (1/n)*Sum_{k=1..n} 3^floor((k^2+1)/2) * a(n-k) for n>0, with a(0)=1.
EXAMPLE
G.f.: A(x) = 1 + 3*x + 9*x^2 + 99*x^3 + 1917*x^4 + 324567*x^5 +...
log(A(x)) = 3*x + 3^2*x^2/2 + 3^5*x^3/3 + 3^8*x^4/4 + 3^13*x^5/5 + 3^18*x^6/6 +...
PROG
(PARI) {a(n)=polcoeff(exp(sum(k=1, n, 3^floor((k^2+1)/2)*x^k/k)+x*O(x^n)), n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 10 2009
STATUS
approved
G.f.: exp( Sum_{n>=1} (3^n - A(x))^n * x^n/n ).
+10
2
1, 2, 32, 5872, 10244654, 166008832278, 24810745551644598, 34076373857728228215714, 428687442859626139066325301140, 49247086410581981443124673896698437124, 51529024823944797258322973430879108808780359272
OFFSET
0,2
EXAMPLE
G.f.: A(x) = 1 + 2*x + 32*x^2 + 5872*x^3 + 10244654*x^4 + 166008832278*x^5 +...
where
log(A(x)) = (3 - A(x))*x + (3^2 - A(x))^2*x^2/2 + (3^3 - A(x))^3*x^3/3 + (3^4 - A(x))^4*x^4/4 +...
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, (3^m-A+x*O(x^n))^m*x^m/m))); polcoeff(A, n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 21 2011
STATUS
approved
G.f.: A(x) = exp( Sum_{n>=1} 3^(n^2)/(1 - 3^n*x)^n * x^n/n ).
+10
0
1, 3, 54, 7470, 11326446, 173007630594, 25222890606413004, 34295263336258106333292, 429734207324188407742780371030, 49292144072318945019920850119049478578
OFFSET
0,2
COMMENTS
An example of this logarithmic identity at q=3:
Sum_{n>=1} [q^(n^2)/(1 - q^n*x)^n]*x^n/n = Sum_{n>=1} [(1 + q^n)^n - 1]*x^n/n.
FORMULA
G.f.: A(x) = (1-x)*exp( Sum_{n>=1} (1 + 3^n)^n * x^n/n );
Equals the first differences of A155204.
EXAMPLE
G.f.: A(x) = 1 + 3*x + 54*x^2 + 7470*x^3 + 11326446*x^4 +...
Log(A(x)) = 3/(1-3*x)*x + 3^4/(1-3^2*x)^2*x^2/2 + 3^9/(1-3^3*x)^3*x^3/3 +...
Log(A(x)) = (4-1)*x + (10^2-1)*x^2/2 + (28^3-1)*x^3/3 + (82^4-1)*x^4/4 +...
PROG
(PARI) {a(n)=polcoeff(exp(sum(m=1, n+1, 3^(m^2)/(1-3^m*x)^m*x^m/m)+x*O(x^n)), n)}
(PARI) /* As First Differences of A155204: */
{a(n)=polcoeff((1-x)*exp(sum(m=1, n+1, (3^m+1)^m*x^m/m)+x*O(x^n)), n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 17 2009
STATUS
approved

Search completed in 0.009 seconds