Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Search: a155207 -id:a155207
     Sort: relevance | references | number | modified | created      Format: long | short | data
G.f.: A(x) = exp( Sum_{n>=1} 2^(n^2) * x^n/n ), a power series in x with integer coefficients.
+10
49
1, 2, 10, 188, 16774, 6745436, 11466849412, 80444398636280, 2306003967992402758, 268654794629082985019564, 126765597346260977505891041836, 241678070948246232010898235031930952, 1858395916567787793818891330877931472153500, 57560683587056536617649234722821582390470430186648
OFFSET
0,2
COMMENTS
More generally, it appears that for m integer, exp( Sum_{n >= 1} m^(n^2) * x^n/n ) is a power series in x with integer coefficients.
This is correct: if b(n) = m^(n^2) then by the little Fermat theorem the Gauss congruences hold: b(n*p^k) == b(n*p^(k-1)) ( mod p^k ) for all prime p and positive integers n and k. Then apply Stanley, Ch. 5, Ex. 5.2(a). - Peter Bala, Dec 25 2019
Conjecture: highest exponent of 2 dividing a(n) = A000120(n) = number of 1's in binary expansion of n, so that a(n)/2^A000120(n) is odd for n >= 0. - Paul D. Hanna, Sep 01 2009
REFERENCES
R. P. Stanley. Enumerative combinatorics, Vol. 2. Volume 62 of Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 1999.
LINKS
Sawian Jaidee, Patrick Moss, Tom Ward, Time-changes preserving zeta functions, arXiv:1809.09199 [math.DS], 2018.
FORMULA
Equals column 0 of triangle A155810.
G.f. satisfies: 2*A(x)*A(4x) + 8*x*A(x)*A'(4x) - A'(x)*A(4x) = 0. - Paul D. Hanna, Feb 24 2009
From Paul D. Hanna, Mar 11 2009: (Start)
The differential equation implies recurrence:
n*a(n) = 2*a(n-1) + sum(k = 1, n - 1, 4^k*a(k)*[2*(k+1)*a(n-1-k) - (n-k)*a(n-k)] for n > 0, with a(0) = 1.
G.f. A(x) generates A156631:
A156631(n) = [x^n] A(x)^(2^n) for n >= 0, where the g.f. of A156631 = Sum_{n >= 0} [Sum_{k >= 1} (2^n*2^k*x)^k/k]^n/n!. (End)
a(n) = (1/n)*Sum_{k = 1..n} 2^(k^2)*a(n-k), a(0) = 1. - Vladeta Jovovic, Feb 04 2009
Euler transform of A159034. - Vladeta Jovovic, Apr 02 2009
a(n) = B_n( 0!*2^(1^2), 1!*2^(2^2), 2!*2^(3^2), ..., (n-1)!*2^(n^2) ) / n!, where B_n() is the complete Bell polynomial. - Max Alekseyev, Oct 10 2014
a(n) ~ 2^(n^2) / n. - Vaclav Kotesovec, Oct 09 2019
EXAMPLE
G.f.: A(x) = 1 + 2*x + 10*x^2 + 188*x^3 + 16774*x^4 + 6745436*x^5 +...
log(A(x)) = 2*x + 2^4*x^2/2 + 2^9*x^3/3 + 2^16*x^4/4 + 2^25*x^5/5 +...
MAPLE
seq(coeff(series(exp(add(2^(k^2)*x^k/k, k=1..n)), x, n+1), x, n), n = 0 .. 15); # Muniru A Asiru, Dec 19 2018
MATHEMATICA
nmax = 14; Exp[Sum[2^(n^2) x^n/n, {n, 1, nmax}]] + O[x]^nmax // CoefficientList[#, x]& (* Jean-François Alcover, Feb 14 2019 *)
PROG
(PARI) {a(n)=polcoeff(exp(sum(m=1, n+1, 2^(m^2)*x^m/m)+x*O(x^n)), n)}
(PARI) {a(n)=if(n==0, 1, (1/n)*(2*a(n-1) + sum(k=1, n-1, 4^k*a(k)*(2*(k+1)*a(n-1-k) - (n-k)*a(n-k)))))} \\ Paul D. Hanna, Mar 11 2009
(PARI) {a(n)=if(n==0, 1, (1/n)*sum(k=1, n, 2^(k^2)*a(n-k)))} \\ Paul D. Hanna, Sep 01 2009
CROSSREFS
Cf. A155201, A155202, A155810 (triangle), variants: A155203, A155207.
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 04 2009
STATUS
approved
G.f.: A(x) = exp( Sum_{n>=1} 3^(n^2) * x^n/n ), a power series in x with integer coefficients.
+10
11
1, 3, 45, 6687, 10782369, 169490304819, 25016281429306077, 34185693516532070487615, 429210580094546346191627404353, 49269611092414945570325157106493868771
OFFSET
0,2
COMMENTS
More generally, for m integer, exp( Sum_{n>=1} m^(n^2) * x^n/n ) is a power series in x with integer coefficients.
FORMULA
Equals column 0 of triangle A155812.
G.f. satisfies: A'(x)/A(x) = 3 + 27*x*A'(9*x)/A(9*x). - Paul D. Hanna, Nov 15 2022
EXAMPLE
G.f.: A(x) = 1 + 3*x + 45*x^2 + 6687*x^3 + 10782369*x^4 + 169490304819*x^5 +...
log(A(x)) = 3*x + 3^4*x^2/2 + 3^9*x^3/3 + 3^16*x^4/4 + 3^25*x^5/5 +...
PROG
(PARI) {a(n)=polcoeff(exp(sum(m=1, n+1, 3^(m^2)*x^m/m)+x*O(x^n)), n)}
CROSSREFS
Cf. A155204, A155205, A155206, A155812 (triangle), variants: A155200, A155207.
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 04 2009
STATUS
approved
G.f.: A(x) = exp( Sum_{n>=1} (4^n + 1)^n * x^n/n ), a power series in x with integer coefficients.
+10
5
1, 5, 157, 92285, 1091087581, 226287110093405, 788215837483128170845, 45292586018794926904179045725, 42540488665745908362239138191829777245, 649578584556365450465861374646071307864262693725
OFFSET
0,2
COMMENTS
More generally, for m integer, exp( Sum_{n>=1} (m^n + y)^n * x^n/n ) is a power series in x and y with integer coefficients.
EXAMPLE
G.f.: A(x) = 1 + 5*x + 157*x^2 + 92285*x^3 + 1091087581*x^4 +...
log(A(x)) = 5*x + 17^2*x^2/2 + 65^3*x^3/3 + 257^4*x^4/4 + 1025^5*x^5/5 +...
PROG
(PARI) {a(n)=polcoeff(exp(sum(m=1, n+1, (4^m+1)^m*x^m/m)+x*O(x^n)), n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 04 2009
STATUS
approved
G.f.: A(x) = exp( Sum_{n>=1} (4^n - 1)^n * x^n/n ), a power series in x with integer coefficients.
+10
5
1, 3, 117, 83691, 1057319541, 224085796087563, 785909534807110163445, 45253898808490419883694669835, 42530103981310660908750359650219091445, 649533982980850199063905669772208004250784346635
OFFSET
0,2
COMMENTS
More generally, for m integer, exp( Sum_{n>=1} (m^n + y)^n * x^n/n ) is a power series in x and y with integer coefficients.
EXAMPLE
G.f.: A(x) = 1 + 3*x + 117*x^2 + 83691*x^3 + 1057319541*x^4 +...
log(A(x)) = 3*x + 15^2*x^2/2 + 63^3*x^3/3 + 255^4*x^4/4 + 1023^5*x^5/5 +...
PROG
(PARI) {a(n)=polcoeff(exp(sum(m=1, n+1, (4^m-1)^m*x^m/m)+x*O(x^n)), n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 04 2009
STATUS
approved
G.f.: A(x) = exp( Sum_{n>=1} (4^n - 1)^n/3^(n-1) * x^n/n ), a power series in x with integer coefficients.
+10
4
1, 3, 42, 9378, 39179127, 2766569881269, 3234201150559172040, 62076685218110095082936700, 19446778350632942283719042004313725, 98999235365955012033013202024947235500115415
OFFSET
0,2
COMMENTS
More generally, for m integer, exp( Sum_{n>=1} (m^n - 1)^n/(m-1)^(n-1) * x^n/n ) is a power series in x with integer coefficients.
Note that g.f. exp( Sum_{n>=1} (4^n - 1)^n/3^n * x^n/n ) has fractional coefficients as a power series in x.
EXAMPLE
G.f.: A(x) = 1 + 3*x + 42*x^2 + 9378*x^3 + 39179127*x^4 +...
log(A(x)) = 3*x + 15^2/3*x^2/2 + 63^3/3^2*x^3/3 + 255^4/3^3*x^4/4 +...
PROG
(PARI) {a(n)=polcoeff(exp(sum(m=1, n+1, (4^m-1)^m/3^(m-1)*x^m/m)+x*O(x^n)), n)}
CROSSREFS
Cf. A155207, A155208, A155209, variant: A155206.
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 04 2009
STATUS
approved
G.f.: A(x) = exp( Sum_{n>=1} 4^[(n^2+1)/2]*x^n/n ), a power series in x with integer coefficients.
+10
2
1, 4, 16, 384, 17856, 13492992, 11507268608, 160888878129152, 2306486569154275328, 537309590223329223155712, 126767209261235580163634135040, 483356141899716284828508078471905280
OFFSET
0,2
COMMENTS
It appears that g.f. exp( Sum_{n>=1} m^[(n^2+1)/2]*x^n/n ) forms a power series in x with integer coefficients for any positive integer m.
FORMULA
a(n) = (1/n)*Sum_{k=1..n} 4^floor((k^2+1)/2) * a(n-k) for n>0, with a(0)=1.
EXAMPLE
G.f.: A(x) = 1 + 4*x + 16*x^2 + 384*x^3 + 17856*x^4 + 13492992*x^5 +...
log(A(x)) = 4*x + 4^2*x^2/2 + 4^5*x^3/3 + 4^8*x^4/4 + 4^13*x^5/5 + 4^18*x^6/6 +...
PROG
(PARI) {a(n)=polcoeff(exp(sum(k=1, n, 4^floor((k^2+1)/2)*x^k/k)+x*O(x^n)), n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 10 2009
STATUS
approved

Search completed in 0.008 seconds