Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Search: a295511 -id:a295511
     Sort: relevance | references | number | modified | created      Format: long | short | data
The Euclid tree with root 1 encoded by semiprimes, read across levels.
+0
4
4, -6, 6, -21, 35, -35, 21, -10, 221, -77, 55, -55, 77, -221, 10, -33, 46513, -493, 377, -119, 187, -1333, 559, -559, 1333, -187, 119, -377, 493, -46513, 33, -14, 143, -209, 629, -14527, 2881, -1189, 533, -161, 391, -15229, 2449, -2263, 3139, -1073, 95, -95
OFFSET
1,1
COMMENTS
The Euclid tree with root 1 is A295515 (sometimes called Calkin-Wilf tree).
For a positive rational r we use the Schinzel-Sierpiński encoding r -> [p, q] as described in A295511 and encode r as sgn*p*q where sgn is -1 if r < 1, else +1.
Apart from a(1) all terms are squarefree.
REFERENCES
E. Dijkstra, Selected Writings on Computing, Springer, 1982, p. 232.
LINKS
N. Calkin and H. S. Wilf, Recounting the rationals, Amer. Math. Monthly, 107 (No. 4, 2000), pp. 360-363.
Matthew M. Conroy, A sequence related to a conjecture of Schinzel, J. Integ. Seqs. Vol. 4 (2001), #01.1.7.
P. D. T. A. Elliott, The multiplicative group of rationals generated by the shifted primes. I., J. Reine Angew. Math. 463 (1995), 169-216.
P. D. T. A. Elliott, The multiplicative group of rationals generated by the shifted primes. II. J. Reine Angew. Math. 519 (2000), 59-71.
A. Malter, D. Schleicher, D. Zagier, New looks at old number theory, Amer. Math. Monthly, 120(3), 2013, pp. 243-264.
A. Schinzel and W. Sierpiński, Sur certaines hypothèses concernant les nombres premiers, Acta Arithmetica 4 (1958), 185-208; erratum 5 (1958) p. 259.
EXAMPLE
The tree starts:
4
-6 6
-21 35 -35 21
-10 221 -77 55 -55 77 -221 10
MAPLE
EuclidTree := proc(n) local k, DijkstraFusc;
DijkstraFusc := proc(m) option remember; local a, b, n; a := 1; b := 0; n := m;
while n > 0 do if type(n, odd) then b := a+b else a := a+b fi; n := iquo(n, 2) od; b end:
seq(DijkstraFusc(k)/DijkstraFusc(k+1), k=2^(n-1)..2^n-1) end:
SchinzelSierpinski := proc(l) local a, b, r, p, q, sgn;
a := numer(l); b := denom(l); q := 2; sgn := `if`(a < b, -1, 1);
while q < 1000000000 do r := a*(q - 1); if r mod b = 0 then p := r/b + 1;
if isprime(p) then return(sgn*p*q) fi fi; q := nextprime(q); od;
print("Search limit reached!", a, b) end:
Tree := level -> seq(SchinzelSierpinski(l), l=EuclidTree(level)): seq(Tree(n), n=1..6);
CROSSREFS
KEYWORD
sign,tabf
AUTHOR
Peter Luschny, Nov 23 2017
STATUS
approved
The Euclid tree, read across levels.
+0
4
0, 1, 1, 1, 1, 2, 2, 1, 1, 3, 3, 2, 2, 3, 3, 1, 1, 4, 4, 3, 3, 5, 5, 2, 2, 5, 5, 3, 3, 4, 4, 1, 1, 5, 5, 4, 4, 7, 7, 3, 3, 8, 8, 5, 5, 7, 7, 2, 2, 7, 7, 5, 5, 8, 8, 3, 3, 7, 7, 4, 4, 5, 5, 1, 1, 6, 6, 5, 5, 9, 9, 4, 4, 11, 11, 7, 7, 10, 10, 3, 3, 11, 11, 8, 8
OFFSET
1,6
COMMENTS
Set N(x) = 1 + floor(x) - frac(x) and let '"' denote the ditto operator, referring to the previously computed expression. Assume the first expression is '0'. Then [0, repeat(N("))] will generate the natural numbers 0, 1, 2, 3, ... and [0, repeat(1/N("))] will generate the rational numbers 0/1, 1/1, 1/2, 2/1, 1/3, 3/2, ... Every reduced nonnegative rational number r appears exactly once in this list as a relatively prime pair [n, d] = r = n/d. We list numerator and denominator one after the other in the sequence.
The apt name 'Euclid tree' is taken from the exposition of Malter, Schleicher and Don Zagier. It is sometimes called the Calkin-Wilf tree. The enumeration is based on Stern's diatomic series (which is a subsequence) and computed by a modification of Dijkstra's 'fusc' function.
The tree listed has root 0, the variant with root 1 is more widely used. Seen as sequences the difference between the two trees is trivial: it is enough to leave out the first two terms; but as trees they are markedly different (see the example section).
REFERENCES
M. Aigner and G. M. Ziegler, Proofs from The Book, Springer-Verlag, Berlin, 3rd ed., 2004.
LINKS
N. Calkin and H. S. Wilf, Recounting the rationals, Amer. Math. Monthly, 107 (No. 4, 2000), pp. 360-363.
Edsger Dijkstra, Selected Writings on Computing, Springer, 1982, p. 232. EWD 578: More about the function 'fusc'.
A. Malter, D. Schleicher, and D. Zagier, New looks at old number theory, Amer. Math. Monthly, 120(3), 2013, pp. 243-264.
Moritz A. Stern, Über eine zahlentheoretische Funktion, J. Reine Angew. Math., 55 (1858), 193-220.
FORMULA
Some characteristics in comparison to the tree with root 1, seen as a table with T(n,k) for n >= 1 and 1 <= k <= 2^(n-1). Here Tr(n,k), Tp(n,k), Tq(n,k) denotes the fraction r, the numerator of r and the denominator of r in row n and column k respectively.
With root 0: With root 1:
Root Tr(1,1) 0/1 1/1
Tp(n,1) 0,1,2,3,... 1,1,1,1,...
Tp(n,2^(n-1)) 0,1,2,3,... 1,2,3,4,...
Tq(n,1) 1,1,1,1,... 1,2,3,4,...
Tq(n,2^(n-1)) 1,2,3,4,... 1,1,1,1,...
Sum_k Tp(n,k) 0,2,8,26,... A024023 1,3,9,27,... A000244
Sum_k Tq(n,k) 1,3,9,27,... A000244 1,3,9,27,... A000244
Sum_k 2Tr(n,k) 0,3,9,21,... A068156 2,5,11,23,... A083329
Sum_k Tp(n,k)Tq(n,k) 0,3,17,81,... A052913-1 1,4,18,82,... A052913
----
a(n) = A002487(floor(n/2)). - Georg Fischer, Nov 29 2022
EXAMPLE
The tree with root 0 starts:
[0/1]
[1/1, 1/2]
[2/1, 1/3, 3/2, 2/3]
[3/1, 1/4, 4/3, 3/5, 5/2, 2/5, 5/3, 3/4]
[4/1, 1/5, 5/4, 4/7, 7/3, 3/8, 8/5, 5/7, 7/2, 2/7, 7/5, 5/8, 8/3, 3/7, 7/4, 4/5]
.
The tree with root 1 starts:
[1/1]
[1/2, 2/1]
[1/3, 3/2, 2/3, 3/1]
[1/4, 4/3, 3/5, 5/2, 2/5, 5/3, 3/4, 4/1]
[1/5, 5/4, 4/7, 7/3, 3/8, 8/5, 5/7, 7/2, 2/7, 7/5, 5/8, 8/3, 3/7, 7/4, 4/5, 5/1]
MAPLE
# First implementation: use it only if you are not afraid of infinite loops.
a := x -> 1/(1+floor(x)-frac(x)): 0; do a(%) od;
# Second implementation:
lusc := proc(m) local a, b, n; a := 0; b := 1; n := m; while n > 0 do
if n mod 2 = 1 then b := a + b else a := a + b fi; n := iquo(n, 2) od; a end:
R := n -> 3*2^(n-1)-1 .. 2^n: # The range of level n.
EuclidTree_rat := n -> [seq(lusc(k+1)/lusc(k), k=R(n), -1)]:
EuclidTree_num := n -> [seq(lusc(k+1), k=R(n), -1)]:
EuclidTree_den := n -> [seq(lusc(k), k=R(n), -1)]:
EuclidTree_pair := n -> ListTools:-Flatten([seq([lusc(k+1), lusc(k)], k=R(n), -1)]):
seq(print(EuclidTree_pair(n)), n=1..5);
PROG
(Sage)
def A295515(n):
if n == 1: return 0
M = [0, 1]
for b in (n//2 - 1).bits():
M[b] = M[0] + M[1]
return M[1]
print([A295515(n) for n in (1..85)])
CROSSREFS
Cf. A002487, A174981, A294446 (Stern-Brocot tree), A294442 (Kepler's tree), A295511 (Schinzel-Sierpiński tree), A295512 (encoded by semiprimes).
KEYWORD
nonn
AUTHOR
Peter Luschny, Nov 25 2017
STATUS
approved
The numerators of the fractions in the Schinzel-Sierpiński tree A295511, read across levels. Also an encoding of Stern's diatomic series A002487.
+0
3
2, 2, 3, 3, 7, 5, 7, 2, 17, 7, 11, 5, 11, 13, 5, 3, 241, 17, 29, 7, 17, 31, 43, 13, 43, 11, 17, 13, 29, 193, 11, 2, 13, 11, 37, 73, 67, 29, 41, 7, 23, 97, 79, 31, 73, 29, 19, 5, 37, 43, 73, 31, 157, 17, 23, 13, 41, 43, 199, 17, 19, 11, 7
OFFSET
1,1
EXAMPLE
The triangle (row lengths are 2^(n-1)) starts:
1: 2
2: 2, 3
3: 3, 7, 5, 7
4: 2, 17, 7, 11, 5, 11, 13, 5
5: 3, 241, 17, 29, 7, 17, 31, 43, 13, 43, 11, 17, 13, 29, 193, 11
PROG
(Sage) # uses[SSETree from A295511]
def A295510_row(n):
if n == 1: return [2]
return [r.numerator() for r in SSETree(n)]
for n in (1..6): print(A295510_row(n))
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Peter Luschny, Nov 23 2017
STATUS
approved
Maxima of the numerators (and also of the denominators) of row n in the Schinzel-Sierpinski tree of fractions A295511.
+0
1
2, 3, 7, 17, 241, 199, 647, 1117, 4231, 8161, 15361, 28057, 67801, 308509, 263101, 515089, 1525921, 2103817, 3376459
OFFSET
1,1
PROG
(Sage)
def A295509(n):
return max(A295510_row(n))
[A295509(n) for n in (1..10)]
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Peter Luschny, Nov 24 2017
STATUS
approved

Search completed in 0.007 seconds