Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
Search: a305744 -id:a305744
Displaying 1-10 of 12 results found. page 1 2
     Sort: relevance | references | number | modified | created      Format: long | short | data
A002410 Nearest integer to imaginary part of n-th zero of Riemann zeta function.
(Formerly M4924 N2113)
+10
59
14, 21, 25, 30, 33, 38, 41, 43, 48, 50, 53, 56, 59, 61, 65, 67, 70, 72, 76, 77, 79, 83, 85, 87, 89, 92, 95, 96, 99, 101, 104, 105, 107, 111, 112, 114, 116, 119, 121, 123, 124, 128, 130, 131, 133, 135, 138, 140, 141, 143, 146, 147, 150, 151, 153, 156, 158, 159, 161 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
"All these zeros of the form s + it have real part s = 1/2 and are simple. Thus the Riemann hypothesis is true at least for t < 3330657430697." - Wedeniwski
From Daniel Forgues, Jul 24 2009: (Start)
All nontrivial zeros on the critical line, of the form 1/2 + i*t, have an associated conjugate nontrivial zero of the form 1/2 - i*t.
Any nontrivial zeros off the critical line, if ever found, would come in pairs (1/2 +- delta) + i*t, 0 < delta < 1/2. Each of these pairs, again if ever found, would then have their associated conjugate pair (1/2 +- delta) - i*t, 0 < delta < 1/2. (End)
The sequence is not strictly increasing. - Joerg Arndt, Jan 17 2015
The fraction of numbers n such that a(n) = a(n-1) has density 1. There are only finitely many numbers n with a(n) > a(n-1) + 1, see A208436. - Charles R Greathouse IV, Mar 07 2018
Conjecture: Noninteger rationals of the form m/2^bigomega(m) that can be used to approximate this sequence, i.e. a(n) ~~ 2*Pi*A374074(n)/2^bigomega(A374074(n)) - n/2 +- (...), where '~~' means 'close to'. - Friedjof Tellkamp, Jul 04 2024
REFERENCES
Gregory Benford, Gravity's whispers, Futures Column, Nature, 446 (Jul 15 2010), p. 406. [Gravity waves are detected on Earth that turn out to contain a list of the zeros of the Riemann zeta function, essentially this sequence]
E. Bombieri, "The Riemann Hypothesis" in 'The Millennium Prize Problems' Chap. 7 pp. 107-128 Eds: J. Carlson, A. Jaffe & A. Wiles, Amer. Math. Soc. Providence RI 2006.
P. Borwein et al., The Riemann Hypothesis, Can. Math. Soc. (CMS) Ottawa ON 2007.
S. Chowla, Riemann Hypothesis and Hilbert's Tenth Problem, Mathematics and Its Application Series Vol. 4, Taylor & Francis NY 1965.
J. Derbyshire, Prime Obsession, Penguin Books 2004.
K. Devlin, The Millennium Problems, Chapter 1 (pp. 19-62) Basic Books NY 2002.
M. du Sautoy, The Music of the Primes, Fourth Estate/HarperCollins NY 2003.
H. M. Edwards, Riemann's Zeta Function, Academic Press, NY, 1974, p. 96.
C. B. Haselgrove and J. C. P. Miller, Tables of the Riemann Zeta Function. Royal Society Mathematical Tables, Vol. 6, Cambridge Univ. Press, 1960, p. 58.
A. Ivic, The Riemann Zeta-Function: Theory and Applications, Dover NY 2003.
D. S. Jandu, Riemann Hypothesis and Prime Number Theorem, Infinite Bandwidth Publishing, N. Hollywood CA 2006.
A. A. Karatsuba & S. M. Voronin, The Riemann Zeta-Function, Walter de Gruyter, Berlin 1992.
G. Lachaud, "L'hypothèse de Riemann" in La Recherche No.346 October 2001 pp. 24-30 (or Les Dossiers de La Recherche No. Aug 20 2005 pp. 26-35) Paris.
M. L. Lapidus, In Search of the Riemann Zeros, Amer. Math. Soc. (AMS) Providence RI 2008.
P. Meier & J. Steuding, "L'hypothèse de Riemann" in 'Pour la Science' (French Edition of 'Scientific American') pp 22-9, March 2009, Issue No. 377, Paris.
P. Odifreddi, The Mathematical Century, Chapter 5.2, p. 168, Princeton Univ. Press NJ 2004.
S. J. Patterson, An Introduction to the Theory of the Riemann Zeta-Function, Cambridge Univ. Press, UK 1995.
D. N. Rockmore, Stalking the Riemann Hypothesis, Jonathan Cape UK 2005.
K. Sabbagh, The Riemann Hypothesis, Farrar Straus Giroux NY 2003.
K. Sabbagh, Dr. Riemann's Zeros, Atlantic Books London 2003.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, Clarendon Press NY 1986.
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
J. Arias-de-Reyna, X-Ray of Riemann's zeta-function, arXiv:math/0309433 [math.NT], 2003.
E. Bogomolny et al., On the spacing distribution of the Riemann zeros:corrections to the asymptotic result, arXiv:math/0602270 [math.NT], 2006.
E. Bogomolny et al., On the spacing distribution of the Riemann zeros: corrections to the asymptotic result, Journal of Physics A: Mathematical and General, Vol. 39, No. 34 (2006), 10743-10754.
J. M. Borwein, D. M. Bradley & R. E. Crandall, Computational strategies for the Riemann zeta function
R. P. Brent, J. van de Lune, H. J. J. te Riele & D. T. Winter, The first 200,000,001 zeros of Riemann's zeta function
C. K. Caldwell, The Prime Glossary, Riemann hypothesis
H. T. Chan, More precise Pair Correlation Conjecture, arXiv:math/0206293 [math.NT], 2002.
H. T. Chan, More precise pair correlation of zeros and primes in short intervals, arXiv:math/0206292 [math.NT], 2002.
A. Y. Cheer & D. A. Goldston, Simple Zeros of the Riemann Zeta-Function, Proc. Am. Math. Soc. 118 (1993) 365.
Y.-J. Choie et al., On Robin's criterion for the Riemann Hypothesis, arXiv:math/0604314 [math.NT], 2006.
Y.-J. Choie et al., On Robin's criterion for the Riemann hypothesis, Journal de théorie des nombres de Bordeaux, Vol 19, No. 2 (2007), 357-372.
J. B. Conrey, The Riemann Hypothesis, Notices of the AMS, Vol. 50, No. 3 (2003), 341-353.
J. B. Conrey & G. Myerson, On the Balazard-Saias criterion for the Riemann Hypothesis, arXiv:math/0002254 [math.NT], 2000.
J. Derbyshire, Prime Obsession
E. Elizalde, V. Moretti & S. Zerbini, On recent strategies proposed for proving Riemann hypothesis, arXiv:math-ph/0109006, 2001.
E. Elizalde, V. Moretti, and S. Zerbini, On Recent Strategies Proposed for Proving the Riemann Hypothesis, International Journal of Modern Physics A, Vol. 18, No. 12 (2003), 2189-2196.
D. W. Farmer, Counting distinct zeros of the Riemann zeta-function, The Electronic Journal of Combinatorics, 2 (1995), #R1.
K. Ford & A Zaharescu, On the distribution of imaginary parts of zeros of the Riemann zeta function, arXiv:math/0405459 [math.NT], 2004.
K. Ford and A. Zaharescu, On the distribution of imaginary parts of zeros of the Riemann zeta function, Journal für die reine und angewandte Mathematik, Vol. 2005, No. 579 (2005), 145-158.
R. Garunkstis and J. Steuding, On the distribution of zeros of the Hurwitz zeta-function, Math. Comput. 76 (2007), 323-337.
R. Garunkstis and J. Steuding, Questions around the Nontrivial Zeros of the Riemann Zeta-Function. Computations and Classifications, Math. Model. Anal. 16 (2011), 72-81.
D. A. Goldston, Notes on Pair Correlation of Zeros and Prime Numbers, arXiv:math/0412313 [math.NT], 2004.
D. A. Goldston & S. M. Gonek, A note on S(T) and the zeros of the Riemann zeta-function, arXiv:math/0511092 [math.NT], 2005.
S. Gonek, Three Lectures on the Riemann Zeta-Function, arXiv:math/0401126 [math.NT], 2004.
X. Gourdon & P. Sebah, The Riemann Zeta-function zeta(s)
J. P. Gram, Note sur les zéros de la fonction zeta(s) de Riemann, Acta Mathematica, 27 (1903), 289-304.
A. Ivic, On some reasons for doubting the Riemann hypothesis, arXiv:math/0311162 [math.NT], 2003.
A. Ivic, On some recent results in the theory of the zeta-function, arXiv:math/0312425 [math.NT], 2003.
D. Jao, PlanetMath.Org, Riemann zeta function
N. M. Katz & P. Sarnak, Zeroes of zeta functions and symmetry, Bull. Amer. Math. Soc. 36 (1999), 1-26.
E. Klarreich, Prime Time
A. F. Lavrik, Riemann hypotheses
N. Levinson, At Least One-Third of Zeros of Riemann's Zeta-Function are on sigma=1/2, Proc Natl Acad Sci U S A. 1974 Apr; 71(4): 1013-1015.
Lionman & Allispaul, Riemann Hypothesis
J. van de Lune, H. J. J. te Riele & D. T. Winter, Rigorous High Speed Separation Of Zeros Of Riemann's Zeta Function
J. van de Lune, H. J. J. te Riele & D. T. Winter, On the Zeros of the Riemann Zeta Function in the Critical Strip, IV
B. Luque & L. Lucasa, The first-digit frequencies of prime numbers and Riemann zeta zeros, Proceedings of The Royal Society A, Apr 22 2009.
N. Ng, Large gaps between the zeros of the Riemann zeta function, arXiv:math/0510530 [math.NT], 2005.
A. M. Odlyzko & H. J. J. te Riele, Disproof of the Mertens Conjecture
K. Ramachandra, 'Current Science' 77(7)951 10.10.1999, On the future of Riemann Hypothesis(pp 1-3/28)
N. J. A. Sloane, "A Handbook of Integer Sequences" Fifty Years Later, arXiv:2301.03149 [math.NT], 2023, p. 6.
J. Sondow and C. Dumitrescu, A monotonicity property of Riemann's xi function and a reformulation of the Riemann Hypothesis, Period. Math. Hungar. 60 (2010), 37-40.
K. Soundararajan, On the Distribution of Gaps between Zeros of the Riemann Zeta Function, in 'The Quarterly Journal of Mathematics' pp. 383-Sep 07 1996 Vol. 47 No. 187 Oxford Univ. Press.
E. C. Titchmarsh, The Zeroes of the Riemann Zeta-Function, Proc. Royal Soc. London, 151 pp. 234-255 1935.
J. van de Lune, H. J. J. te Riele and D. T. Winter, Rigorous High Speed Separation of Zeros of Riemann's Zeta Function, Report NW 113/81, Mathematical Centre, Amsterdam, October 1981.
J. van de Lune, H. J. J. te Riele and D. T. Winter, On the Zeros of the Riemann Zeta Function in the Critical Strip IV, Mathematics of Computation 46 (1986), 667-681.
B. Van der Pol, An Electro-Mechanical Investigation Of The Riemann Zeta-Function In The Critical Strip, Bull. Amer. Math. Soc. 53 (1947), 976-981.
M. R. Watkins, The Riemann Hypothesis
Sebastian Wedeniwski, ZetaGrid
Eric Weisstein's World of Mathematics, Riemann Hypothesis
Eric Weisstein's World of Mathematics, Riemann Zeta Function Zeros
Eric Weisstein's World of Mathematics, Xi-Function
FORMULA
a(n) ~ (2*Pi*e) * e^(W0(n/e)), where W0 is the principal branch of Lambert's W function. - Charles R Greathouse IV, Sep 14 2012, corrected by Hal M. Switkay, Oct 04 2021
a(n) ~ 2*Pi*(n - 11/8)/ProductLog((n - 11/8)/exp(1)). This is the asymptotic by Guilherme França and André LeClair. - Mats Granvik, Mar 10 2015; corrected May 16 2016
EXAMPLE
The imaginary parts of the first 4 zeros are 14.134725... (A058303), 21.0220396... (A065434), 25.01085758... (A065452), 30.424876... (A065453).
MATHEMATICA
Table[Round[Im[ZetaZero[n]]], {n, 59}] (* Jean-François Alcover, May 02 2011 *)
PROG
(Sage)
def A002410_list(n):
Z = lcalc.zeros(n)
return [round(z) for z in Z]
A002410_list(59) # Peter Luschny, May 02 2014
(PARI) apply(round, lfunzeros(lzeta, 100)) \\ Charles R Greathouse IV, Mar 10 2016
CROSSREFS
Cf. A013629 (floor), A092783 (ceiling), A057641, A057640, A058209, A058210, A120401, A122526, A072080, A124288 ("unstable" zeta zeros), A124289 ("unstable twins"), A236212, A177885, A374074 (approximation).
Imaginary part of k-th nontrivial zero of Riemann zeta function: A058303 (k=1), A065434 (k=2), A065452 (k=3), A065453 (k=4), A192492 (k=5), A305741 (k=6), A305742 (k=7), A305743 (k=8), A305744 (k=9), A306004 (k=10).
KEYWORD
nonn,easy,nice
AUTHOR
EXTENSIONS
More terms from Pab Ter (pabrlos(AT)yahoo.com), May 08 2004
STATUS
approved
A013629 Floor of imaginary parts of nontrivial zeros of Riemann zeta function. +10
33
14, 21, 25, 30, 32, 37, 40, 43, 48, 49, 52, 56, 59, 60, 65, 67, 69, 72, 75, 77, 79, 82, 84, 87, 88, 92, 94, 95, 98, 101, 103, 105, 107, 111, 111, 114, 116, 118, 121, 122, 124, 127, 129, 131, 133, 134, 138, 139, 141, 143, 146, 147, 150, 150, 153, 156, 157, 158, 161 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
REFERENCES
H. M. Edwards, Riemann's Zeta Function, Academic Press, NY, 1974, p. 96.
C. B. Haselgrove and J. C. P. Miller, Tables of the Riemann Zeta Function. Royal Society Mathematical Tables, Vol. 6, Cambridge Univ. Press, 1960, p. 58.
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
FORMULA
a(n) ~ 2*Pi*n/log n. - Charles R Greathouse IV, Jun 30 2011
a(n) ~ (2*Pi*e) * e^(W0(n/e)), where W0 is the principal branch of Lambert's W function. - Hal M. Switkay, Oct 04 2021
a(n) = A092783(n) - 1. - M. F. Hasler, Nov 23 2018
EXAMPLE
The imaginary parts of the first 4 zeros are 14.134725... (A058303), 21.0220396... (A065434), 25.01085758... (A065452), 30.424876... (A065453). Therefore the sequence starts: 14, 21, 25, 30, ..., as does A002410 (rounded values; main entry). But the 5th, 6th and 7th values are 32.935... (A192492), 37.586... (A305741), 40.9187... (A305742), whence a(n) = A002410(n)-1 and A002410 = A092783 (ceiling) for these. - M. F. Hasler, Nov 23 2018
MATHEMATICA
Table[Floor[Im[ZetaZero[n]]], {n, 60}] (* Alonso del Arte, Feb 07 2011 *)
PROG
(Sage)
def A013629_list(n):
Z = lcalc.zeros(n)
return [floor(z) for z in Z]
A013629_list(50) # Peter Luschny, May 02 2014
(PARI) lfunzeros(lzeta, 100)\1 \\ Charles R Greathouse IV, Mar 10 2016
CROSSREFS
Cf. A002410 (rounded values: main entry), A092783 (ceiling).
Imaginary part of k-th nontrivial zero of Riemann zeta function: A058303 (k=1), A065434 (k=2), A065452 (k=3), A065453 (k=4), A192492 (k=5), A305741 (k=6), A305742 (k=7), A305743 (k=8), A305744 (k=9), A306004 (k=10).
KEYWORD
nonn
AUTHOR
John Morrison (John.Morrison(AT)armltd.co.uk)
EXTENSIONS
Edited by Daniel Forgues, Jun 30 2011
Definition corrected by Jonathan Sondow, Sep 18 2011
STATUS
approved
A058303 Decimal expansion of the imaginary part of the first nontrivial zero of the Riemann zeta function. +10
26
1, 4, 1, 3, 4, 7, 2, 5, 1, 4, 1, 7, 3, 4, 6, 9, 3, 7, 9, 0, 4, 5, 7, 2, 5, 1, 9, 8, 3, 5, 6, 2, 4, 7, 0, 2, 7, 0, 7, 8, 4, 2, 5, 7, 1, 1, 5, 6, 9, 9, 2, 4, 3, 1, 7, 5, 6, 8, 5, 5, 6, 7, 4, 6, 0, 1, 4, 9, 9, 6, 3, 4, 2, 9, 8, 0, 9, 2, 5, 6, 7, 6, 4, 9, 4, 9, 0, 1, 0, 3, 9, 3, 1, 7, 1, 5, 6, 1, 0, 1, 2, 7, 7, 9, 2 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET
2,2
COMMENTS
"The Riemann Hypothesis, considered by many to be the most important unsolved problem of mathematics, is the assertion that all of zeta's nontrivial zeros line up with the first two all of which lie on the line 1/2 + sqrt(-1)*t, which is called the critical line. It is known that the hypothesis is obeyed for the first billion and a half zeros." (Wagon)
We can compute 105 digits of this zeta zero as the numerical integral: gamma = Integral_{t=0..gamma+15} (1/2)*(1 - sign((RiemannSiegelTheta(t) + Im(log(zeta(1/2 + i*t))))/Pi - n + 3/2)) where n=1 and where the initial value of gamma = 1. The upper integration limit is arbitrary as long as it is greater than the zeta zero computed recursively. The recursive formula fails at zeta zeros with indices n equal to sequence A153815. - Mats Granvik, Feb 15 2017
REFERENCES
S. Wagon, "Mathematica In Action," W. H. Freeman and Company, NY, 1991, page 361.
LINKS
P. J. Forrester and A. Mays, Finite size corrections in random matrix theory and Odlyzko's data set for the Riemann zeros, arXiv preprint arXiv:1506.06531 [math-ph], 2015.
P. J. Forrester and A. Mays, Finite size corrections in random matrix theory and Odlyzko's data set for the Riemann zeros, Proceedings of the Royal Society A, Vol: 471, Issue: 2182, 2015.
Eric Weisstein's World of Mathematics, Riemann Zeta Function Zeros.
Eric Weisstein's World of Mathematics, Xi-Function.
FORMULA
zeta(1/2 + i*14.1347251417346937904572519836...) = 0.
EXAMPLE
14.1347251417346937904572519835624702707842571156992...
MAPLE
Digits:= 150; Re(fsolve(Zeta(1/2+I*t)=0, t=14.13)); # Iaroslav V. Blagouchine, Jun 24 2016
MATHEMATICA
FindRoot[ Zeta[1/2 + I*t], {t, 14 + {-.3, +.3}}, AccuracyGoal -> 100, WorkingPrecision -> 120]
RealDigits[N[Im[ZetaZero[1]], 100]][[1]] (* Charles R Greathouse IV, Apr 09 2012 *)
(* The following numerical integral takes about 9 minutes to compute *)Clear[n, t, gamma]; gamma = 1; numberofzetazeros = 1; Quiet[Do[gamma = N[NIntegrate[(1/2)*(1 - Sign[(RiemannSiegelTheta[t] + Im[Log[Zeta[I*t + 1/2]]])/Pi - n + 3/2]), {t, 0, gamma + 15}, PrecisionGoal -> 110, MaxRecursion -> 350, WorkingPrecision -> 120], 105]; Print[gamma], {n, 1, numberofzetazeros}]]; RealDigits[gamma][[1]] (* Mats Granvik, Feb 15 2017 *)
PROG
(PARI) solve(x=14, 15, imag(zeta(1/2+x*I))) \\ Charles R Greathouse IV, Feb 26 2012
(PARI) lfunzeros(1, 15)[1] \\ Charles R Greathouse IV, Mar 07 2018
CROSSREFS
Imaginary part of k-th nontrivial zero of Riemann zeta function: A058303 (k=1: this), A065434 (k=2), A065452 (k=3), A065453 (k=4), A192492 (k=5), A305741 (k=6), A305742 (k=7), A305743 (k=8), A305744 (k=9), A306004 (k=10).
Cf. A002410 (round), A013629 (floor); A057641, A057640, A058209, A058210.
KEYWORD
nonn,cons,easy
AUTHOR
Robert G. Wilson v, Dec 08 2000
STATUS
approved
A065434 Decimal expansion of imaginary part of 2nd nontrivial zero of Riemann zeta function. +10
19
2, 1, 0, 2, 2, 0, 3, 9, 6, 3, 8, 7, 7, 1, 5, 5, 4, 9, 9, 2, 6, 2, 8, 4, 7, 9, 5, 9, 3, 8, 9, 6, 9, 0, 2, 7, 7, 7, 3, 3, 4, 3, 4, 0, 5, 2, 4, 9, 0, 2, 7, 8, 1, 7, 5, 4, 6, 2, 9, 5, 2, 0, 4, 0, 3, 5, 8, 7, 5, 9, 8, 5, 8, 6, 0, 6, 8, 8, 9, 0, 7, 9, 9, 7, 1, 3, 6, 5, 8, 5, 1, 4, 1, 8, 0, 1, 5, 1, 4 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET
2,1
LINKS
Enrico Bombieri, Problems of the Millennium: the Riemann Hypothesis, Clay Mathematics Institute.
EXAMPLE
The zero is at 1/2 + i*21.0220396387715549926284795938969...
MAPLE
Digits:= 150; Re(fsolve(Zeta(1/2+I*t)=0, t=21)); # Iaroslav V. Blagouchine, Jun 25 2016
MATHEMATICA
ZetaZero[2] // Im // RealDigits[#, 10, 99]& // First (* Jean-François Alcover, Mar 05 2013 *)
PROG
(PARI) solve(x=21, 22, real(zeta(1/2+x*I))) \\ Charles R Greathouse IV, Jun 30 2011
(PARI) lfunzeros(1, [21, 22])[1] \\ M. F. Hasler, Nov 23 2018
CROSSREFS
Imaginary part of k-th nontrivial zero of Riemann zeta function: A058303 (k=1), A065434 (k=2: this), A065452 (k=3), A065453 (k=4), A192492 (k=5), A305741 (k=6), A305742 (k=7), A305743 (k=8), A305744 (k=9), A306004 (k=10).
Cf. A002410 (round), A013629 (floor).
KEYWORD
nonn,cons
AUTHOR
N. J. A. Sloane, Nov 24 2001
STATUS
approved
A065452 Decimal expansion of imaginary part of 3rd nontrivial zero of Riemann zeta function. +10
18
2, 5, 0, 1, 0, 8, 5, 7, 5, 8, 0, 1, 4, 5, 6, 8, 8, 7, 6, 3, 2, 1, 3, 7, 9, 0, 9, 9, 2, 5, 6, 2, 8, 2, 1, 8, 1, 8, 6, 5, 9, 5, 4, 9, 6, 7, 2, 5, 5, 7, 9, 9, 6, 6, 7, 2, 4, 9, 6, 5, 4, 2, 0, 0, 6, 7, 4, 5, 0, 9, 2, 0, 9, 8, 4, 4, 1, 6, 4, 4, 2, 7, 7, 8, 4, 0, 2, 3, 8, 2, 2, 4, 5, 5, 8, 0, 6, 2, 4 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET
2,1
COMMENTS
See A002410 and A058303 for more information.
LINKS
EXAMPLE
The zero is at 1/2 + i * 25.01085758014568876321379099256282181865954967...
MATHEMATICA
ZetaZero[3] // Im // RealDigits[#, 10, 99]& // First (* Jean-François Alcover, Mar 05 2013 *)
PROG
(PARI) solve(x=25, 25.1, real(zeta(1/2+x*I))) \\ Charles R Greathouse IV, Jun 30 2011
(PARI) lfunzeros(1, [25, 26])[1] \\ or: lfunzeros(1, 26)[3]. - M. F. Hasler, Nov 23 2018
CROSSREFS
Imaginary part of k-th nontrivial zero of Riemann zeta function: A058303 (k=1), A065434 (k=2), A065452 (k=3: this), A065453 (k=4), A192492 (k=5), A305741 (k=6), A305742 (k=7), A305743 (k=8), A305744 (k=9), A306004 (k=10).
Cf. A002410 (these values rounded to nearest integer), A013629 (floor), A092783 (ceiling).
KEYWORD
nonn,cons
AUTHOR
N. J. A. Sloane, Nov 24 2001
EXTENSIONS
Minor edits by M. F. Hasler, Nov 23 2018
STATUS
approved
A065453 Decimal expansion of imaginary part of 4th nontrivial zero of Riemann zeta function. +10
17
3, 0, 4, 2, 4, 8, 7, 6, 1, 2, 5, 8, 5, 9, 5, 1, 3, 2, 1, 0, 3, 1, 1, 8, 9, 7, 5, 3, 0, 5, 8, 4, 0, 9, 1, 3, 2, 0, 1, 8, 1, 5, 6, 0, 0, 2, 3, 7, 1, 5, 4, 4, 0, 1, 8, 0, 9, 6, 2, 1, 4, 6, 0, 3, 6, 9, 9, 3, 3, 2, 9, 3, 8, 9, 3, 3, 3, 2, 7, 7, 9, 2, 0, 2, 9, 0, 5, 8, 4, 2, 9, 3, 9, 0, 2, 0, 8, 9, 1 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET
2,1
COMMENTS
See A002410 and A058303 for more information.
LINKS
EXAMPLE
The zero is at 1/2 + i * 30.42487612585951321031189753058409132...
MATHEMATICA
RealDigits[ Im[ ZetaZero[4]], 10, 99] // First (* Jean-François Alcover, Mar 07 2013 *)
PROG
(PARI) solve(x=30, 31, real(zeta(1/2+x*I))) \\ Charles R Greathouse IV, Mar 10 2016
(PARI) lfunzeros(lzeta, [30, 31])[1] \\ Charles R Greathouse IV, Mar 10 2016
CROSSREFS
Imaginary part of k-th nontrivial zero of Riemann zeta function: A058303 (k=1), A065434 (k=2), A065452 (k=3), A065453 (k=4: this), A192492 (k=5), A305741 (k=6), A305742 (k=7), A305743 (k=8), A305744 (k=9), A306004 (k=10).
Cf. A002410 (round), A013629 (floor), A092783 (ceiling).
KEYWORD
nonn,cons
AUTHOR
N. J. A. Sloane, Nov 24 2001
STATUS
approved
A192492 Decimal expansion of imaginary part of 5th nontrivial zero of Riemann zeta function. +10
13
3, 2, 9, 3, 5, 0, 6, 1, 5, 8, 7, 7, 3, 9, 1, 8, 9, 6, 9, 0, 6, 6, 2, 3, 6, 8, 9, 6, 4, 0, 7, 4, 9, 0, 3, 4, 8, 8, 8, 1, 2, 7, 1, 5, 6, 0, 3, 5, 1, 7, 0, 3, 9, 0, 0, 9, 2, 8, 0, 0, 0, 3, 4, 4, 0, 7, 8, 4, 8, 1, 5, 6, 0, 8, 6, 3, 0, 5, 5, 1, 0, 0, 5, 9, 3, 8, 8, 4, 8, 4, 9, 6, 1, 3, 5, 3 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET
2,1
COMMENTS
The real part of the 5th nontrivial zero is of course 1/2 (A020761; the Riemann hypothesis is here assumed to be true).
LINKS
EXAMPLE
The zero is at 1/2 + i * 32.9350615877391896906623689640749...
MATHEMATICA
(* ZetaZero was introduced in Version 6.0 *) RealDigits[ZetaZero[5], 10, 100][[1]]
PROG
(PARI) solve(y=32, 33, real(zeta(1/2+y*I))) \\ Charles R Greathouse IV, Mar 10 2016
(PARI) lfunzeros(lzeta, [32, 33])[1] \\ Charles R Greathouse IV, Mar 10 2016
CROSSREFS
Cf. A002410: nearest integer to imaginary part of n-th zero of Riemann zeta function (main entry); also A013629 (floor) and A092783 (ceiling).
The imaginary parts of the first 4 zeros are 14.134725... (A058303), 21.0220396... (A065434), 25.01085758... (A065452), 30.424876... (A065453). Others are A305741 (k=6), A305742 (k=7), A305743 (k=8), A305744 (k=9), A306004 (k=10).
The real parts of the trivial zeros are given by A005843 multiplied by -1 (and ignoring the initial 0 of that sequence).
KEYWORD
nonn,cons
AUTHOR
Alonso del Arte, Jul 02 2011
EXTENSIONS
Example and cross-references edited by M. F. Hasler, Nov 23 2018
STATUS
approved
A092783 Ceiling of imaginary parts of zeros of Riemann zeta function. +10
12
15, 22, 26, 31, 33, 38, 41, 44, 49, 50, 53, 57, 60, 61, 66, 68, 70, 73, 76, 78, 80, 83, 85, 88, 89, 93, 95, 96, 99, 102, 104, 106, 108, 112, 112, 115, 117, 119, 122, 123, 125, 128, 130, 132, 134, 135, 139, 140, 142, 144, 147, 148, 151, 151, 154, 157, 158, 159, 162, 164, 166, 168, 170, 170, 174 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
LINKS
FORMULA
a(n) = 1+A013629(n). - Robert G. Wilson v, Jan 27 2015
MATHEMATICA
Table[Ceiling[Im[ZetaZero[n]]], {n, 1, 65}] (* Jean-François Alcover, Feb 25 2019 *)
PROG
(Sage)
def A092783_list(n):
Z = lcalc.zeros(n)
return [ceil(z) for z in Z]
A092783_list(50) # Peter Luschny, May 02 2014
(PARI) apply(ceil, lfunzeros(1, [1, 180])) \\ M. F. Hasler, Nov 23 2018
CROSSREFS
Cf. A002410: nearest integer to imaginary part of n-th zero of Riemann zeta function (main entry).
Cf. A013629: floor of imaginary parts of zeros of Riemann zeta function.
Imaginary part of k-th nontrivial zero of Riemann zeta function: A058303 (k=1), A065434 (k=2), A065452 (k=3), A065453 (k=4), A192492 (k=5), A305741 (k=6), A305742 (k=7), A305743 (k=8), A305744 (k=9), A306004 (k=10).
KEYWORD
nonn
AUTHOR
Jorge Coveiro, Apr 14 2004
EXTENSIONS
More terms, link and cross-references from M. F. Hasler, Nov 23 2018
STATUS
approved
A305741 Decimal expansion of imaginary part of 6th nontrivial zero of Riemann zeta function. +10
12
3, 7, 5, 8, 6, 1, 7, 8, 1, 5, 8, 8, 2, 5, 6, 7, 1, 2, 5, 7, 2, 1, 7, 7, 6, 3, 4, 8, 0, 7, 0, 5, 3, 3, 2, 8, 2, 1, 4, 0, 5, 5, 9, 7, 3, 5, 0, 8, 3, 0, 7, 9, 3, 2, 1, 8, 3, 3, 3, 0, 0, 1, 1, 1, 3, 6, 2, 2, 1, 4, 9, 0, 8, 9, 6, 1, 8, 5, 3, 7, 2, 6, 4, 7, 3, 0, 3, 2, 9, 1, 0 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET
2,1
LINKS
EXAMPLE
The zero is at 1/2 + i * 37.58617815882567125721776348070533282140559735083...
MATHEMATICA
RealDigits[Im[ZetaZero[6]], 10, 120][[1]] (* Vaclav Kotesovec, Jun 23 2018 *)
PROG
(PARI) lfunzeros(1, [37, 38])[1] \\ M. F. Hasler, Nov 23 2018
CROSSREFS
Imaginary part of k-th nontrivial zero of Riemann zeta function: A058303 (k=1), A065434 (k=2), A065452 (k=3), A065453 (k=4), A192492 (k=5), this sequence (k=6), A305742 (k=7), A305743 (k=8), A305744 (k=9), A306004 (k=10).
Cf. A002410 (rounded values: main entry), A013629 (floor), A092783 (ceiling).
KEYWORD
nonn,cons
AUTHOR
Seiichi Manyama, Jun 23 2018
STATUS
approved
A305742 Decimal expansion of imaginary part of 7th nontrivial zero of Riemann zeta function. +10
12
4, 0, 9, 1, 8, 7, 1, 9, 0, 1, 2, 1, 4, 7, 4, 9, 5, 1, 8, 7, 3, 9, 8, 1, 2, 6, 9, 1, 4, 6, 3, 3, 2, 5, 4, 3, 9, 5, 7, 2, 6, 1, 6, 5, 9, 6, 2, 7, 7, 7, 2, 7, 9, 5, 3, 6, 1, 6, 1, 3, 0, 3, 6, 6, 7, 2, 5, 3, 2, 8, 0, 5, 2, 8, 7, 2, 0, 0, 7, 1, 2, 8, 2, 9, 9, 6, 0, 0, 3, 7, 1, 9 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET
2,1
LINKS
EXAMPLE
The zero is at 1/2 + i * 40.918719012147495187398126914633254395726165962777...
MATHEMATICA
RealDigits[Im[ZetaZero[7]], 10, 120][[1]] (* Vaclav Kotesovec, Jun 23 2018 *)
PROG
(PARI) lfunzeros(1, [40, 41])[1] \\ M. F. Hasler, Nov 23 2018
CROSSREFS
Imaginary part of k-th nontrivial zero of Riemann zeta function: A058303 (k=1), A065434 (k=2), A065452 (k=3), A065453 (k=4), A192492 (k=5), A305741 (k=6), this sequence (k=7), A305743 (k=8), A305744 (k=9), A306004 (k=10).
Cf. A002410 (rounded values: main entry), A013629 (floor), A092783 (ceiling).
KEYWORD
nonn,cons
AUTHOR
Seiichi Manyama, Jun 23 2018
STATUS
approved
page 1 2

Search completed in 0.018 seconds

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 27 19:37 EDT 2024. Contains 375471 sequences. (Running on oeis4.)