The normal development of the somatosensory system requires intact sensory inputs from the periph... more The normal development of the somatosensory system requires intact sensory inputs from the periphery during a critical window of time early in development. Here we determined how the removal of only part of the ascending spinal inputs early in development affects the anatomical and neurophysiological development of the somatosensory system. We performed spinal overhemisections in rat pups at C3/C4 levels
Early brain injury including white matter damage (WMD) appears strongly correlated to perinatal h... more Early brain injury including white matter damage (WMD) appears strongly correlated to perinatal hypoxia-ischemia and adverse neurological outcomes in preterm survivors. Indeed, WMD has been widely associated with subtle to major motor disturbances, sensory, behavioral and cognitive impairments in preterm infants who afterward develop cerebral palsy (CP). Prenatal ischemia (PI) has been shown to reproduce the main features of WMD observed in preterm infants. The present study was aimed at determining in adult rats the impact of PI on brain axons, musculoskeletal histology and locomotor activity. PI was induced by unilateral intrauterine artery ligation at E17 in pregnant rats. We found axonal degeneration and reactive astrogliosis in several white matter regions of adult PI rats. We found mild myopathic and secondary joint changes, including increased variability in myofiber size in several hind limb muscles, decreased myofibers numbers but increased Pax 7 cells and myofiber size in the gastrocnemius, and mild knee and ankle chondromalacia. Although treadmill locomotion appeared normal, several kinematic parameters, such as stride length, amplitude, velocity and leg joint angles were altered in adult PI rats compared to shams. Using intra-and inter-group variability of kinematic parameters, PI seemed to impair the maturation of locomotion on the treadmill. In addition, PI rats exhibited spontaneous hyperactivity in open-field test. Musculoskeletal changes appeared concomitant with mild impairments in gait and posture. Our rodent model of WMD based on PI reproduces the mild motor deficits and musculoskeletal changes observed in many preterm infants with a perinatal history of hypoxia-ischemia, and contributes towards a better understanding of the interplay between brain injury, musculoskeletal histopathology and gait disturbances encountered subsequently.
To understand how information is coded in the primary somatosensory cortex (S1) we need to deciph... more To understand how information is coded in the primary somatosensory cortex (S1) we need to decipher the relationship between neural activity and tactile stimuli. Such a relationship can be formally measured by mutual information. The present study was designed to determine how S1 neuronal populations code for the multidimensional kinetic features (i.e. random, time-varying patterns of force) of complex tactile stimuli, applied at different locations of the rat forepaw. More precisely, the stimulus localization and feature extraction were analyzed as two independent processes, using both rate coding and temporal coding strategies. To model the process of stimulus kinetic feature extraction, multidimensional stimuli were projected onto lower dimensional subspace and then clustered according to their similarity. Different combinations of stimuli clustering were applied to differentiate each stimulus identification process. Information analyses show that both processes are synergistic, this synergy is enhanced within the temporal coding framework. The stimulus localization process is faster than the stimulus feature extraction process. The latter provides more information quantity with rate coding strategy, whereas the localization process maximizes the mutual information within the temporal coding framework. Therefore, combining mutual information analysis with robust clustering of complex stimuli provides a framework to study neural coding mechanisms related to complex stimuli discrimination.
After incomplete spinal cord injury (SCI), the adult central nervous system is spontaneously capa... more After incomplete spinal cord injury (SCI), the adult central nervous system is spontaneously capable of substantial reorganizations that can underlie functional recovery. Most studies have focused on intraspinal reorganizations after SCI and not on the correlative cortical remodeling. Yet, differential studies of neural correlates of the recovery of sensory and motor abilities may be conducted by segregating motor and somatosensory representations in distinct and topologically organized primary cortical areas. This study was aimed at evaluating the effects of a cervical (C4-C5) spinal cord hemisection on sensorimotor performances and electrophysiological maps in primary somatosensory (S1) and motor (M1) cortices in adult rats. After SCI, an enduring loss of the affected forepaw tactile sensitivity was paralleled by the abolishment of somatosensory evoked responses in the deprived forepaw area within the S1 cortex. In contrast, severe motor deficits in unilateral forelimb were partially restored over the first postoperative month, despite remnant deficits in distal movement. The overall M1 map size was drastically reduced in SCI rats relative to intact rats. In the remaining M1 map, the shoulder and elbow movements were over-represented, consistent with the behavioral recovery of proximal joint movements in almost all rats. By contrast, residual wrist representations were observed in M1 maps of half of the rats that did not systematically correlate with a behavioral recovery of these joint movements. This study highlights the differential potential of ascending and descending pathways to reorganize after SCI.
Cerebral palsy (CP) is a complex disorder of locomotion, posture and movements resulting from pre... more Cerebral palsy (CP) is a complex disorder of locomotion, posture and movements resulting from pre-, peri-or postnatal damage to the developing brain. In a previous study . Comparison between sensorimotor restriction and anoxia on gait and motor cortex organization: implications for a rodent model of cerebral palsy. Neuroscience 129, 141-156.), CP-like movement disorders were more reliably reproduced in rats by hind limb sensorimotor restriction (disuse) during development rather than perinatal asphyxia (PA). To gain new insights into the underpinning mechanisms of CP symptoms we investigated the long-term effects of PA and disuse on the hind limb musculoskeletal histology and topographical organization in the primary somatosensory cortex (S1) of adult rats. Developmental disuse (i.e. hind limb immobilization) associated with PA induced muscle fiber atrophy, extracellular matrix changes in the muscle, and mild to moderate ankle and knee joint degeneration at levels greater than disuse alone. Sensorimotor restricted rats with or without PA exhibited a topographical disorganization of the S1 cortical hind limb representation with abnormally large, multiple and overlapping receptive fields. This disorganization was enhanced when disuse and PA were associated. Altered cortical neuronal properties included increased cortical responsiveness and a decrease in neuronal selectivity to afferent inputs. These data support previous observations that asphyxia per se can generate the substrate for peripheral tissue and brain damage, which are worsened by aberrant sensorimotor experience during maturation, and could explain the disabling movement disorders observed in children with CP.
Repetitive motion disorders, such as carpal tunnel syndrome and focal hand dystonia, can be assoc... more Repetitive motion disorders, such as carpal tunnel syndrome and focal hand dystonia, can be associated with tasks that require prolonged, repetitive behaviors. Previous studies using animal models of repetitive motion have correlated cortical neuroplastic changes or peripheral tissue inflammation with fine motor performance. However, the possibility that both peripheral and central mechanisms coexist with altered motor performance has not been studied. In this study, we investigated the relationship between motor behavior changes associated with repetitive behaviors and both peripheral tissue inflammation and cortical neuroplasticity. A rat model of reaching and grasping involving moderate repetitive reaching with negligible force (MRNF) was used. Rats performed the MRNF task for 2 h/day, 3 days/week for 8 weeks. Reach performance was monitored by measuring reach rate/success, daily exposure, reach movement reversals/ patterns, reach/grasp phase times, grip strength and grooming function. With cumulative task exposure, reach performance, grip strength and agility declined while an inefficient food retrieval pattern increased. In S1 of MRNF rats, a dramatic disorganization of the topographic forepaw representation was observed, including the emergence of large receptive fields located on both the wrist/forearm and forepaw with alterations of neuronal properties. In M1, there was a drastic enlargement of the overall forepaw map area, and of the cortex devoted to digit, arm-digits and elbow-wrist responses. In addition, unusually low current amplitude evoked digit movements. IL-1β and TNF-α increased in forearm flexor muscles and tendons of MRNF animals. The increases in IL-1β and TNF-α negatively correlated with grip strength and amount of current needed to evoke forelimb movements. This study provides strong evidence that both peripheral inflammation and cortical neuroplasticity jointly contribute to the development of chronic repetitive motion disorders.
The cortical forepaw area of young adult rats was mapped by recording the response properties of ... more The cortical forepaw area of young adult rats was mapped by recording the response properties of small clusters of neurons in layer IV of the primary somatosensory (SI) cortex. First we quantitatively analyzed the somatotopic organizational features of the cortical forepaw representation in terms of areal extent and topography, receptive field (RF) sensory modality, size, and location. We also assessed the influence of environmental enrichment, known to induce structural alterations in cortical connectivity, on the representational characteristics of the forepaw maps. Long-Evans rats were housed in environments (standard, SE; enriched, EE) promoting differential tactile experience for 71±113 days from weaning. Within the SI, we found a single and complete topographic map of the cutaneous surfaces of the forepaw consisting of a rostrolateral-caudomedial sequence of digit and pad representational zones. Small islets of noncutaneous responses (NCR; high-threshold, deep-receptor input) within the boundaries of the cutaneous maps were a conspicuous feature of the forepaw map for SE rats. These islets created discontinuities in the representation of contiguous skin territories. In the SE rats, about 79% of the cortical sites activated by light tactile stimulation had a single cutaneous RF, whereas about 21% exhibited multiple RFs. Most single-digit RFs we delineated in the SE rats extended across two or three phalanges. As a result, the representations of the phalangeal skin surfaces were not segregated but formed an overlapping continuum. Moreover, within these regions, as the electrode was displaced in regular steps across the mediolateral axis, RFs did not shift across the digit skin surface in an orderly manner, suggesting a lack of internal topography in the finger representation zones. Tactile experience promoted by environmental enrichment induced alterations in the representational features of the SI cutaneous map of the forepaw.
We investigated the effects of sensory deprivation on the forepaw representation in the primary s... more We investigated the effects of sensory deprivation on the forepaw representation in the primary somatosensory cortex (SI) in the adult rat. Cortical maps were constructed from high-resolution multiunit recordings of the response of layer IV neurons to somatosensory stimuli. The main features of the forepaw representation were described in terms of areal extent and topography of the cortical map, and sensory submodality, size, and location of the receptive field (RF) of small clusters of the cortical neurons. After being weaned, two groups of Long-Evans rats were housed in a standard (SE) or impoverished (IE) environment for 65-115 days. A third group of SE rats was subjected to severe sensorimotor restriction (SR) of one forepaw for 7 days or 14 days, by using a one-sleeved cast. A concomitant effect of unilateral forelimb immobilization was a forced use of the nonrestricted forelimb in postural balance. The maps of both forepaws were derived 24 h after the cast was removed and the animal was allowed normal limb use. In a fourth group, SE rats experienced a 7-day immobilization followed by symmetrical limb use for 7 days before we mapped the hemisphere contralateral to the casted limb. For the SE and IE rats, the total areal extent of the cutaneous forepaw representation was similar, but IE rats exhibited a significant expansion of cortical islets serving high-threshold, presumably noncutaneous inputs, which were included in the cutaneous maps. In addition, SI neurons of IE rats had greatly enlarged glabrous, but not hairy, skin RFs. For the SR rats, the areal extent of the cutaneous map of the casted forepaw decreased by about 50%, after both 7- and 14-day forelimb immobilization. Large cortical sectors presumed to be formerly activated by cutaneous inputs were driven by high-threshold inputs that disrupted the somatotopic representation of the forepaw skin surfaces. These "emergent" representational sectors were topographically organized. By contrast, the areal extent and topography of the non-casted forepaw representation did not differ from those of SE rats. The size of glabrous RFs on the casted forepaw was similar to that of SE rats. On the contrary, glabrous RFs on the noncasted forepaw of SR rats were larger than those on their casted forepaw. The size of hairy RFs was not altered by the forelimb restriction. Interestingly, alteration of the somatotopic features of the casted forepaw map persisted after 7 days of symmetric use of the forelimbs. The present study demonstrates that continuous sensory experience is needed for the organizational features of SI maps to be maintained.
Immediate postlesion reorganization of the somatosensory cortical representation was examined in ... more Immediate postlesion reorganization of the somatosensory cortical representation was examined in adult rats. Response properties of small clusters of neurons were recorded in the area of the primary somatosensory cortex (SI) devoted to the contralateral forepaw representation. Electrophysiological maps were elaborated on the basis of the sensory`submodality' (cutaneous or noncutaneous) and the location of the peripheral receptive ®elds (RFs) of layer IV neurons. Recordings were made prior to, and from 1 to 12 h after, induction of a focal neurovascular lesion to the SI cortex that initially destroyed a part (8.5%) of the cutaneous representation. Moreover, the in¯uence of an anti-ischaemic substance (piracetam) on lesion-induced changes was analysed. The main observations were: (i) a gradual outward expansion of the area of the functional lesion, which was smaller in the piracetam-treated (PT) rats than in the control, placebo-treated (PL) rats; (ii) a substantial remodelling of the spared representational zones, both in cortical sectors adjoining the site of injury and those remote from the site; (iii) a signi®cant postlesion increase in the size of cutaneous RFs in the PT rats, but not in the PL rats; (iv) a better preservation of RF submodality and topographic organization in the PT maps than in the PL maps; and (v) a decrease in neuronal responsiveness to cutaneous stimulation which was less pronounced in the PT than in the PL rats. Our results can be ascribed to a rapid change in the balance of excitatory and inhibitory connections which leads to unmasking of subthreshold inputs converging onto cortical neurons. Our ®ndings also indicate that acute piracetam treatment exerts a protective function on the physiological response properties of cortical neurons after focal injury.
Perinatal brain injury including white matter damage (WMD) is highly related to sensory, motor or... more Perinatal brain injury including white matter damage (WMD) is highly related to sensory, motor or cognitive impairments in humans born prematurely. Our aim was to examine the neuroanatomical, functional and behavioral changes in adult rats that experienced prenatal ischemia (PI), thereby inducing WMD. PI was induced by unilateral uterine artery ligation at E17 in pregnant rats. We assessed performances in gait, cognitive abilities and topographical organization of maps, and neuronal and glial density in primary motor and somatosensory cortices, the hippocampus and prefrontal cortex, as well as axonal degeneration and astrogliosis in white matter tracts. We found WMD in corpus callosum and brainstem, and associated with the hippocampus and somatosensory cortex, but not the motor cortex after PI. PI rats exhibited mild locomotor impairments associated with minor signs of spasticity. Motor map organization and neuronal density were normal in PI rats, contrasting with major somatosensory map disorganization, reduced neuronal density, and a marked reduction of inhibitory interneurons. PI rats exhibited spontaneous hyperactivity in openfield test and short-term memory deficits associated with abnormal neuronal density in related brain areas. Thus, this model reproduces in adult PI rats the main deficits observed in infants with a perinatal history of hypoxia-ischemia and WMD.
We combined behavioral assessment of texture discrimination and electrophysiological mapping of c... more We combined behavioral assessment of texture discrimination and electrophysiological mapping of concomitant reorganization in the forepaw representation within the SI cortex. Rats were housed in enriched (EE) or impoverished (IE) environments which have been shown to remodel the forepaw map and possibly alter discriminative abilities. In addition, animals were trained to discriminate homogeneous floorboards of invariant roughness from heterogeneous floorboards of gradually decreasing roughness contrasts during locomotion. As reported recently, differences in perceptual abilities were not related to housing conditions, but to a predilection for a floorboard type [Bourgeon S, Xerri C, Coq JO. Abilities in tactile discrimination of textures in adult rats exposed to enriched or impoverished environments. Behav Brain Res 2004;153:217-231]. Consistently, the present study shows that cortical map remodeling resulting from short-duration daily experience can prevail over changes induced by housing conditions. The relative area of glabrous skin representation was related to the discrimination performance and learning abilities in the rats (H) with a predilection for heterogeneous floorboards, i.e. in the animals performing discrimination in the most challenging perceptual context. By contrast, this cortical area was influenced by the duration of sensory experience in rats (h) with a predilection for homogeneous floorboards. Both EE condition and training to discrimination selectively decreased the sizes of the SI neurons' receptive fields (RFs) located on glabrous skin. Smaller RFs and larger cortical areas serving glabrous skin were correlated with better perceptual performances and learning abilities in the H rats only. The present study shows that representational reorganization related to tactile discrimination performances depends upon the perceptual context.
In previous studies, we have shown that housing in enriched environment for about 3 months after ... more In previous studies, we have shown that housing in enriched environment for about 3 months after weaning improved the topographic organization and decreased the size of the receptive fields (RFs) located on the glabrous skin surfaces in the forepaw maps of the primary somatosensory cortex (SI) in rats [Exp. Brain Res. 121 (1998) 191]. In contrast, housing in impoverished environment induced a degradation of the SI forepaw representation, characterized by topographic disruptions, a reduction of the cutaneous forepaw area and an enlargement of the glabrous RFs [Exp. Brain Res. 129 (1999) 518]. Based on these two studies, we postulated that these representational alterations could underlie changes in haptic perception. Therefore, the present study was aimed at determining the influence of housing conditions on the rat's abilities in tactile texture discrimination. After a 2-month exposure to enriched or impoverished environments, rats were trained to perform a discrimination task during locomotion on floorboards of different roughness. At the end of every daily behavioral session, rats were replaced in their respective housing environment. Rats had to discriminate homogeneous (low roughness) from heterogeneous floorboards (combination of two different roughness levels). To determine the maximum performance in texture discrimination, the roughness contrast of the heterogeneous texture was gradually reduced, so that homogeneous and heterogeneous floorboards became harder to differentiate. We found that the enriched rats learned the first steps of the behavioral task faster than the impoverished rats, whereas both groups exhibited similar performances in texture discrimination. An individual "predilection" for either homogeneous or heterogeneous floorboards, presumably reflecting a behavioral strategy, seemed to account for the absence of differences in haptic discrimination between groups. The sensory experience depending on the rewarded texture discrimination task seems to have a greater influence on individual texture discrimination abilities than the sensorimotor experience related to housing conditions.
The organization of anterior and lateral somatosensory cortex was investigated in titi monkeys (C... more The organization of anterior and lateral somatosensory cortex was investigated in titi monkeys (Callicebus moloch). Multiunit microelectrode recordings were used to identify multiple representations of the body, and anatomical tracer injections were used to reveal connections. (1) Representations of the face were identified in areas 3a, 3b, 1, S2, and the parietal ventral area (PV). In area 3b, the face was represented from chin/lower lip to upper lip and neck/upper face in a rostrocaudal sequence. The representation of the face in area 1 mirrored that of area 3b. Another face representation was located in area 3a. Adjoining face representations in S2 and PV exhibited mirror-image patterns to those of areas 3b and 1. (2) Two representations of the body, the rostral and caudal ventral somatosensory areas (VSr and VSc), were found in the dorsal part of the insula. VSc was roughly a reversal image of the S2 body representation, and VSr was roughly a reversal of PV. (3) Neurons in the insula next to VSr and VSc responded to auditory stimuli or to both auditory and somatosensory stimuli. (4) Injections of tracers within the hand representations in areas 3b, 1, and S2 revealed reciprocal connections between these three areas. Injections in areas 3b and 1 labeled the ventroposterior nucleus, whereas injections in S2 labeled the inferior ventroposterior nucleus. The present study demonstrates features of somatosensory cortex of other monkeys in titi monkeys, while revealing additional features that likely apply to other primates.
The normal development of the somatosensory system requires intact sensory inputs from the periph... more The normal development of the somatosensory system requires intact sensory inputs from the periphery during a critical window of time early in development. Here we determined how the removal of only part of the ascending spinal inputs early in development affects the anatomical and neurophysiological development of the somatosensory system. We performed spinal overhemisections in rat pups at C3/C4 levels
Early brain injury including white matter damage (WMD) appears strongly correlated to perinatal h... more Early brain injury including white matter damage (WMD) appears strongly correlated to perinatal hypoxia-ischemia and adverse neurological outcomes in preterm survivors. Indeed, WMD has been widely associated with subtle to major motor disturbances, sensory, behavioral and cognitive impairments in preterm infants who afterward develop cerebral palsy (CP). Prenatal ischemia (PI) has been shown to reproduce the main features of WMD observed in preterm infants. The present study was aimed at determining in adult rats the impact of PI on brain axons, musculoskeletal histology and locomotor activity. PI was induced by unilateral intrauterine artery ligation at E17 in pregnant rats. We found axonal degeneration and reactive astrogliosis in several white matter regions of adult PI rats. We found mild myopathic and secondary joint changes, including increased variability in myofiber size in several hind limb muscles, decreased myofibers numbers but increased Pax 7 cells and myofiber size in the gastrocnemius, and mild knee and ankle chondromalacia. Although treadmill locomotion appeared normal, several kinematic parameters, such as stride length, amplitude, velocity and leg joint angles were altered in adult PI rats compared to shams. Using intra-and inter-group variability of kinematic parameters, PI seemed to impair the maturation of locomotion on the treadmill. In addition, PI rats exhibited spontaneous hyperactivity in open-field test. Musculoskeletal changes appeared concomitant with mild impairments in gait and posture. Our rodent model of WMD based on PI reproduces the mild motor deficits and musculoskeletal changes observed in many preterm infants with a perinatal history of hypoxia-ischemia, and contributes towards a better understanding of the interplay between brain injury, musculoskeletal histopathology and gait disturbances encountered subsequently.
To understand how information is coded in the primary somatosensory cortex (S1) we need to deciph... more To understand how information is coded in the primary somatosensory cortex (S1) we need to decipher the relationship between neural activity and tactile stimuli. Such a relationship can be formally measured by mutual information. The present study was designed to determine how S1 neuronal populations code for the multidimensional kinetic features (i.e. random, time-varying patterns of force) of complex tactile stimuli, applied at different locations of the rat forepaw. More precisely, the stimulus localization and feature extraction were analyzed as two independent processes, using both rate coding and temporal coding strategies. To model the process of stimulus kinetic feature extraction, multidimensional stimuli were projected onto lower dimensional subspace and then clustered according to their similarity. Different combinations of stimuli clustering were applied to differentiate each stimulus identification process. Information analyses show that both processes are synergistic, this synergy is enhanced within the temporal coding framework. The stimulus localization process is faster than the stimulus feature extraction process. The latter provides more information quantity with rate coding strategy, whereas the localization process maximizes the mutual information within the temporal coding framework. Therefore, combining mutual information analysis with robust clustering of complex stimuli provides a framework to study neural coding mechanisms related to complex stimuli discrimination.
After incomplete spinal cord injury (SCI), the adult central nervous system is spontaneously capa... more After incomplete spinal cord injury (SCI), the adult central nervous system is spontaneously capable of substantial reorganizations that can underlie functional recovery. Most studies have focused on intraspinal reorganizations after SCI and not on the correlative cortical remodeling. Yet, differential studies of neural correlates of the recovery of sensory and motor abilities may be conducted by segregating motor and somatosensory representations in distinct and topologically organized primary cortical areas. This study was aimed at evaluating the effects of a cervical (C4-C5) spinal cord hemisection on sensorimotor performances and electrophysiological maps in primary somatosensory (S1) and motor (M1) cortices in adult rats. After SCI, an enduring loss of the affected forepaw tactile sensitivity was paralleled by the abolishment of somatosensory evoked responses in the deprived forepaw area within the S1 cortex. In contrast, severe motor deficits in unilateral forelimb were partially restored over the first postoperative month, despite remnant deficits in distal movement. The overall M1 map size was drastically reduced in SCI rats relative to intact rats. In the remaining M1 map, the shoulder and elbow movements were over-represented, consistent with the behavioral recovery of proximal joint movements in almost all rats. By contrast, residual wrist representations were observed in M1 maps of half of the rats that did not systematically correlate with a behavioral recovery of these joint movements. This study highlights the differential potential of ascending and descending pathways to reorganize after SCI.
Cerebral palsy (CP) is a complex disorder of locomotion, posture and movements resulting from pre... more Cerebral palsy (CP) is a complex disorder of locomotion, posture and movements resulting from pre-, peri-or postnatal damage to the developing brain. In a previous study . Comparison between sensorimotor restriction and anoxia on gait and motor cortex organization: implications for a rodent model of cerebral palsy. Neuroscience 129, 141-156.), CP-like movement disorders were more reliably reproduced in rats by hind limb sensorimotor restriction (disuse) during development rather than perinatal asphyxia (PA). To gain new insights into the underpinning mechanisms of CP symptoms we investigated the long-term effects of PA and disuse on the hind limb musculoskeletal histology and topographical organization in the primary somatosensory cortex (S1) of adult rats. Developmental disuse (i.e. hind limb immobilization) associated with PA induced muscle fiber atrophy, extracellular matrix changes in the muscle, and mild to moderate ankle and knee joint degeneration at levels greater than disuse alone. Sensorimotor restricted rats with or without PA exhibited a topographical disorganization of the S1 cortical hind limb representation with abnormally large, multiple and overlapping receptive fields. This disorganization was enhanced when disuse and PA were associated. Altered cortical neuronal properties included increased cortical responsiveness and a decrease in neuronal selectivity to afferent inputs. These data support previous observations that asphyxia per se can generate the substrate for peripheral tissue and brain damage, which are worsened by aberrant sensorimotor experience during maturation, and could explain the disabling movement disorders observed in children with CP.
Repetitive motion disorders, such as carpal tunnel syndrome and focal hand dystonia, can be assoc... more Repetitive motion disorders, such as carpal tunnel syndrome and focal hand dystonia, can be associated with tasks that require prolonged, repetitive behaviors. Previous studies using animal models of repetitive motion have correlated cortical neuroplastic changes or peripheral tissue inflammation with fine motor performance. However, the possibility that both peripheral and central mechanisms coexist with altered motor performance has not been studied. In this study, we investigated the relationship between motor behavior changes associated with repetitive behaviors and both peripheral tissue inflammation and cortical neuroplasticity. A rat model of reaching and grasping involving moderate repetitive reaching with negligible force (MRNF) was used. Rats performed the MRNF task for 2 h/day, 3 days/week for 8 weeks. Reach performance was monitored by measuring reach rate/success, daily exposure, reach movement reversals/ patterns, reach/grasp phase times, grip strength and grooming function. With cumulative task exposure, reach performance, grip strength and agility declined while an inefficient food retrieval pattern increased. In S1 of MRNF rats, a dramatic disorganization of the topographic forepaw representation was observed, including the emergence of large receptive fields located on both the wrist/forearm and forepaw with alterations of neuronal properties. In M1, there was a drastic enlargement of the overall forepaw map area, and of the cortex devoted to digit, arm-digits and elbow-wrist responses. In addition, unusually low current amplitude evoked digit movements. IL-1β and TNF-α increased in forearm flexor muscles and tendons of MRNF animals. The increases in IL-1β and TNF-α negatively correlated with grip strength and amount of current needed to evoke forelimb movements. This study provides strong evidence that both peripheral inflammation and cortical neuroplasticity jointly contribute to the development of chronic repetitive motion disorders.
The cortical forepaw area of young adult rats was mapped by recording the response properties of ... more The cortical forepaw area of young adult rats was mapped by recording the response properties of small clusters of neurons in layer IV of the primary somatosensory (SI) cortex. First we quantitatively analyzed the somatotopic organizational features of the cortical forepaw representation in terms of areal extent and topography, receptive field (RF) sensory modality, size, and location. We also assessed the influence of environmental enrichment, known to induce structural alterations in cortical connectivity, on the representational characteristics of the forepaw maps. Long-Evans rats were housed in environments (standard, SE; enriched, EE) promoting differential tactile experience for 71±113 days from weaning. Within the SI, we found a single and complete topographic map of the cutaneous surfaces of the forepaw consisting of a rostrolateral-caudomedial sequence of digit and pad representational zones. Small islets of noncutaneous responses (NCR; high-threshold, deep-receptor input) within the boundaries of the cutaneous maps were a conspicuous feature of the forepaw map for SE rats. These islets created discontinuities in the representation of contiguous skin territories. In the SE rats, about 79% of the cortical sites activated by light tactile stimulation had a single cutaneous RF, whereas about 21% exhibited multiple RFs. Most single-digit RFs we delineated in the SE rats extended across two or three phalanges. As a result, the representations of the phalangeal skin surfaces were not segregated but formed an overlapping continuum. Moreover, within these regions, as the electrode was displaced in regular steps across the mediolateral axis, RFs did not shift across the digit skin surface in an orderly manner, suggesting a lack of internal topography in the finger representation zones. Tactile experience promoted by environmental enrichment induced alterations in the representational features of the SI cutaneous map of the forepaw.
We investigated the effects of sensory deprivation on the forepaw representation in the primary s... more We investigated the effects of sensory deprivation on the forepaw representation in the primary somatosensory cortex (SI) in the adult rat. Cortical maps were constructed from high-resolution multiunit recordings of the response of layer IV neurons to somatosensory stimuli. The main features of the forepaw representation were described in terms of areal extent and topography of the cortical map, and sensory submodality, size, and location of the receptive field (RF) of small clusters of the cortical neurons. After being weaned, two groups of Long-Evans rats were housed in a standard (SE) or impoverished (IE) environment for 65-115 days. A third group of SE rats was subjected to severe sensorimotor restriction (SR) of one forepaw for 7 days or 14 days, by using a one-sleeved cast. A concomitant effect of unilateral forelimb immobilization was a forced use of the nonrestricted forelimb in postural balance. The maps of both forepaws were derived 24 h after the cast was removed and the animal was allowed normal limb use. In a fourth group, SE rats experienced a 7-day immobilization followed by symmetrical limb use for 7 days before we mapped the hemisphere contralateral to the casted limb. For the SE and IE rats, the total areal extent of the cutaneous forepaw representation was similar, but IE rats exhibited a significant expansion of cortical islets serving high-threshold, presumably noncutaneous inputs, which were included in the cutaneous maps. In addition, SI neurons of IE rats had greatly enlarged glabrous, but not hairy, skin RFs. For the SR rats, the areal extent of the cutaneous map of the casted forepaw decreased by about 50%, after both 7- and 14-day forelimb immobilization. Large cortical sectors presumed to be formerly activated by cutaneous inputs were driven by high-threshold inputs that disrupted the somatotopic representation of the forepaw skin surfaces. These "emergent" representational sectors were topographically organized. By contrast, the areal extent and topography of the non-casted forepaw representation did not differ from those of SE rats. The size of glabrous RFs on the casted forepaw was similar to that of SE rats. On the contrary, glabrous RFs on the noncasted forepaw of SR rats were larger than those on their casted forepaw. The size of hairy RFs was not altered by the forelimb restriction. Interestingly, alteration of the somatotopic features of the casted forepaw map persisted after 7 days of symmetric use of the forelimbs. The present study demonstrates that continuous sensory experience is needed for the organizational features of SI maps to be maintained.
Immediate postlesion reorganization of the somatosensory cortical representation was examined in ... more Immediate postlesion reorganization of the somatosensory cortical representation was examined in adult rats. Response properties of small clusters of neurons were recorded in the area of the primary somatosensory cortex (SI) devoted to the contralateral forepaw representation. Electrophysiological maps were elaborated on the basis of the sensory`submodality' (cutaneous or noncutaneous) and the location of the peripheral receptive ®elds (RFs) of layer IV neurons. Recordings were made prior to, and from 1 to 12 h after, induction of a focal neurovascular lesion to the SI cortex that initially destroyed a part (8.5%) of the cutaneous representation. Moreover, the in¯uence of an anti-ischaemic substance (piracetam) on lesion-induced changes was analysed. The main observations were: (i) a gradual outward expansion of the area of the functional lesion, which was smaller in the piracetam-treated (PT) rats than in the control, placebo-treated (PL) rats; (ii) a substantial remodelling of the spared representational zones, both in cortical sectors adjoining the site of injury and those remote from the site; (iii) a signi®cant postlesion increase in the size of cutaneous RFs in the PT rats, but not in the PL rats; (iv) a better preservation of RF submodality and topographic organization in the PT maps than in the PL maps; and (v) a decrease in neuronal responsiveness to cutaneous stimulation which was less pronounced in the PT than in the PL rats. Our results can be ascribed to a rapid change in the balance of excitatory and inhibitory connections which leads to unmasking of subthreshold inputs converging onto cortical neurons. Our ®ndings also indicate that acute piracetam treatment exerts a protective function on the physiological response properties of cortical neurons after focal injury.
Perinatal brain injury including white matter damage (WMD) is highly related to sensory, motor or... more Perinatal brain injury including white matter damage (WMD) is highly related to sensory, motor or cognitive impairments in humans born prematurely. Our aim was to examine the neuroanatomical, functional and behavioral changes in adult rats that experienced prenatal ischemia (PI), thereby inducing WMD. PI was induced by unilateral uterine artery ligation at E17 in pregnant rats. We assessed performances in gait, cognitive abilities and topographical organization of maps, and neuronal and glial density in primary motor and somatosensory cortices, the hippocampus and prefrontal cortex, as well as axonal degeneration and astrogliosis in white matter tracts. We found WMD in corpus callosum and brainstem, and associated with the hippocampus and somatosensory cortex, but not the motor cortex after PI. PI rats exhibited mild locomotor impairments associated with minor signs of spasticity. Motor map organization and neuronal density were normal in PI rats, contrasting with major somatosensory map disorganization, reduced neuronal density, and a marked reduction of inhibitory interneurons. PI rats exhibited spontaneous hyperactivity in openfield test and short-term memory deficits associated with abnormal neuronal density in related brain areas. Thus, this model reproduces in adult PI rats the main deficits observed in infants with a perinatal history of hypoxia-ischemia and WMD.
We combined behavioral assessment of texture discrimination and electrophysiological mapping of c... more We combined behavioral assessment of texture discrimination and electrophysiological mapping of concomitant reorganization in the forepaw representation within the SI cortex. Rats were housed in enriched (EE) or impoverished (IE) environments which have been shown to remodel the forepaw map and possibly alter discriminative abilities. In addition, animals were trained to discriminate homogeneous floorboards of invariant roughness from heterogeneous floorboards of gradually decreasing roughness contrasts during locomotion. As reported recently, differences in perceptual abilities were not related to housing conditions, but to a predilection for a floorboard type [Bourgeon S, Xerri C, Coq JO. Abilities in tactile discrimination of textures in adult rats exposed to enriched or impoverished environments. Behav Brain Res 2004;153:217-231]. Consistently, the present study shows that cortical map remodeling resulting from short-duration daily experience can prevail over changes induced by housing conditions. The relative area of glabrous skin representation was related to the discrimination performance and learning abilities in the rats (H) with a predilection for heterogeneous floorboards, i.e. in the animals performing discrimination in the most challenging perceptual context. By contrast, this cortical area was influenced by the duration of sensory experience in rats (h) with a predilection for homogeneous floorboards. Both EE condition and training to discrimination selectively decreased the sizes of the SI neurons' receptive fields (RFs) located on glabrous skin. Smaller RFs and larger cortical areas serving glabrous skin were correlated with better perceptual performances and learning abilities in the H rats only. The present study shows that representational reorganization related to tactile discrimination performances depends upon the perceptual context.
In previous studies, we have shown that housing in enriched environment for about 3 months after ... more In previous studies, we have shown that housing in enriched environment for about 3 months after weaning improved the topographic organization and decreased the size of the receptive fields (RFs) located on the glabrous skin surfaces in the forepaw maps of the primary somatosensory cortex (SI) in rats [Exp. Brain Res. 121 (1998) 191]. In contrast, housing in impoverished environment induced a degradation of the SI forepaw representation, characterized by topographic disruptions, a reduction of the cutaneous forepaw area and an enlargement of the glabrous RFs [Exp. Brain Res. 129 (1999) 518]. Based on these two studies, we postulated that these representational alterations could underlie changes in haptic perception. Therefore, the present study was aimed at determining the influence of housing conditions on the rat's abilities in tactile texture discrimination. After a 2-month exposure to enriched or impoverished environments, rats were trained to perform a discrimination task during locomotion on floorboards of different roughness. At the end of every daily behavioral session, rats were replaced in their respective housing environment. Rats had to discriminate homogeneous (low roughness) from heterogeneous floorboards (combination of two different roughness levels). To determine the maximum performance in texture discrimination, the roughness contrast of the heterogeneous texture was gradually reduced, so that homogeneous and heterogeneous floorboards became harder to differentiate. We found that the enriched rats learned the first steps of the behavioral task faster than the impoverished rats, whereas both groups exhibited similar performances in texture discrimination. An individual "predilection" for either homogeneous or heterogeneous floorboards, presumably reflecting a behavioral strategy, seemed to account for the absence of differences in haptic discrimination between groups. The sensory experience depending on the rewarded texture discrimination task seems to have a greater influence on individual texture discrimination abilities than the sensorimotor experience related to housing conditions.
The organization of anterior and lateral somatosensory cortex was investigated in titi monkeys (C... more The organization of anterior and lateral somatosensory cortex was investigated in titi monkeys (Callicebus moloch). Multiunit microelectrode recordings were used to identify multiple representations of the body, and anatomical tracer injections were used to reveal connections. (1) Representations of the face were identified in areas 3a, 3b, 1, S2, and the parietal ventral area (PV). In area 3b, the face was represented from chin/lower lip to upper lip and neck/upper face in a rostrocaudal sequence. The representation of the face in area 1 mirrored that of area 3b. Another face representation was located in area 3a. Adjoining face representations in S2 and PV exhibited mirror-image patterns to those of areas 3b and 1. (2) Two representations of the body, the rostral and caudal ventral somatosensory areas (VSr and VSc), were found in the dorsal part of the insula. VSc was roughly a reversal image of the S2 body representation, and VSr was roughly a reversal of PV. (3) Neurons in the insula next to VSr and VSc responded to auditory stimuli or to both auditory and somatosensory stimuli. (4) Injections of tracers within the hand representations in areas 3b, 1, and S2 revealed reciprocal connections between these three areas. Injections in areas 3b and 1 labeled the ventroposterior nucleus, whereas injections in S2 labeled the inferior ventroposterior nucleus. The present study demonstrates features of somatosensory cortex of other monkeys in titi monkeys, while revealing additional features that likely apply to other primates.
Uploads
Papers by Jacques-olivier Coq