Deuterium Quadrupole Coupling Constant (DQCC) in benzene was determined both experimentally by Nu... more Deuterium Quadrupole Coupling Constant (DQCC) in benzene was determined both experimentally by Nuclear Magnetic Resonance spectroscopy in Liquid Crystalline solutions (LC NMR) and theoretically by ab initio electronic structure calculations. DQCCs were measured for benzene-d(1) and 1,3,5-benzene-d(3) using several different liquid crystalline solvents and taking vibrational and deformational corrections into account in the analysis of experimental dipolar couplings, used to determine the orientational order parameter of the dissolved benzene. The experimental DQCC results for the isotopomers benzene-d(1) and 1,3,5-benzene-d(3) are found to be 187.7 kHz and 187.3 kHz, respectively, which are essentially equal within the experimental accuracy (+/-0.4 kHz). Theoretical results were obtained at different C-D bond lengths, and by applying corrections for electron correlation and rovibrational motion on top of large-basis-set Hartree-Fock results. The computations give a consistent DQCC of ca. 189 kHz for three different isotopomers; benzene-d(1), 1,3,5-benzene-d(3), and benzene-d(6), revealing that isotope effects are not detectable within the present experimental accuracy. Calculations carried out using a continuum solvation model to account for intermolecular interaction effects result in very small changes as compared to the data obtained in vacuo. The comparison of theoretical and experimental results points out the selection of the underlying molecular geometry as the most likely source of the remaining discrepancy of less than 2 kHz. Such an agreement between the calculated and the experimental DQCC results can only be achieved if rovibrational effects are considered on one hand in the experimental direct dipolar coupling data, and on the other hand in the theoretical property calculation, as is done presently.
Nuclear spin-lattice (T1) and spin-spin (T2) relaxation times provide versatile information about... more Nuclear spin-lattice (T1) and spin-spin (T2) relaxation times provide versatile information about the dynamics and structure of substances, such as proteins, polymers, porous media, and so forth. Multidimensional experiments increase the information content and resolution of NMR relaxometry, but they also multiply the measurement time. To overcome this issue, we present an efficient strategy for a single-scan measurement of a 2D T1-T2 correlation map. The method shortens the experimental time by one to three orders of magnitude as compared to the conventional method, offering an unprecedented opportunity to study molecular processes in real-time. We demonstrate that, despite the tremendous speed-up, the T1-T2 correlation maps determined by the single-scan method are in good agreement with the maps measured by the conventional method. The concept of the single-scan T1-T2 correlation experiment is applicable to a broad range of other multidimensional relaxation and diffusion experiments.
Deuterium Quadrupole Coupling Constant (DQCC) in benzene was determined both experimentally by Nu... more Deuterium Quadrupole Coupling Constant (DQCC) in benzene was determined both experimentally by Nuclear Magnetic Resonance spectroscopy in Liquid Crystalline solutions (LC NMR) and theoretically by ab initio electronic structure calculations. DQCCs were measured for benzene-d(1) and 1,3,5-benzene-d(3) using several different liquid crystalline solvents and taking vibrational and deformational corrections into account in the analysis of experimental dipolar couplings, used to determine the orientational order parameter of the dissolved benzene. The experimental DQCC results for the isotopomers benzene-d(1) and 1,3,5-benzene-d(3) are found to be 187.7 kHz and 187.3 kHz, respectively, which are essentially equal within the experimental accuracy (+/-0.4 kHz). Theoretical results were obtained at different C-D bond lengths, and by applying corrections for electron correlation and rovibrational motion on top of large-basis-set Hartree-Fock results. The computations give a consistent DQCC of ca. 189 kHz for three different isotopomers; benzene-d(1), 1,3,5-benzene-d(3), and benzene-d(6), revealing that isotope effects are not detectable within the present experimental accuracy. Calculations carried out using a continuum solvation model to account for intermolecular interaction effects result in very small changes as compared to the data obtained in vacuo. The comparison of theoretical and experimental results points out the selection of the underlying molecular geometry as the most likely source of the remaining discrepancy of less than 2 kHz. Such an agreement between the calculated and the experimental DQCC results can only be achieved if rovibrational effects are considered on one hand in the experimental direct dipolar coupling data, and on the other hand in the theoretical property calculation, as is done presently.
Nuclear spin-lattice (T1) and spin-spin (T2) relaxation times provide versatile information about... more Nuclear spin-lattice (T1) and spin-spin (T2) relaxation times provide versatile information about the dynamics and structure of substances, such as proteins, polymers, porous media, and so forth. Multidimensional experiments increase the information content and resolution of NMR relaxometry, but they also multiply the measurement time. To overcome this issue, we present an efficient strategy for a single-scan measurement of a 2D T1-T2 correlation map. The method shortens the experimental time by one to three orders of magnitude as compared to the conventional method, offering an unprecedented opportunity to study molecular processes in real-time. We demonstrate that, despite the tremendous speed-up, the T1-T2 correlation maps determined by the single-scan method are in good agreement with the maps measured by the conventional method. The concept of the single-scan T1-T2 correlation experiment is applicable to a broad range of other multidimensional relaxation and diffusion experiments.
Uploads
Papers by Susanna Ahola