Papers by Mohamed Elnosary
Broad bean mottle virus (BBMV) infects a wide range of hosts, resulting in significant production... more Broad bean mottle virus (BBMV) infects a wide range of hosts, resulting in significant production reductions. The lack of adequate and effective control methods involves implementing novel BBMV control strategies. Herein, we demonstrate the effect of different potassium concentrations (20, 40, and 60 mM) against BBMV in broad bean plants. Potassium could control BBMV infection in broad bean by inhibiting the virus. In addition, infection with BBMV caused a significant decrease in morphological criteria, SPDA, photosynthetic characteristics, phytohormones, and mineral content in broad bean leaves compared to control plants. The levels of reactive oxygen species (ROS) (hydrogen peroxide, hydroxyl radical, and oxygen anion) and ROS scavenging enzymes (catalase, superoxide dismutase, peroxidase, phenylaniline ammonia-lyase, chitinase, and 1,3-glucanase) increased significantly in plants inoculated with BBMV alone or in the presence of K +. In addition, proline and phenolic compounds increased significantly after being infected with BBMV. In conclusion, treatment with a high potassium concentration (60 mM) alleviates the adverse effect of BBMV on broad bean plants by boosting secondary metabolites, phytohormones, and enzymatic antioxidants.
As a result of the emergence of new virus strains and the synthetics, virus infections pose signi... more As a result of the emergence of new virus strains and the synthetics, virus infections pose significant global health challenges, so the need for new therapeutic drugs rises as new vi and bacterial infectious diseases emerge. This study aimed to synth extract and investigate their possible antiviral and antibacterial properties. X microscopy, and UV-Visible spectroscopy were used to validate the synthesis of Ag-NPs production through the shift from yellow color to dark brown color. TEM examination of Ag nanoparticles with mean sizes ranging from 2 to 9 nm and an average particle diameter of 2.5 spectrophotometric investigation revealed an absorption peak at action against the four studied bacteria, with the inhibition zones for Bacillus subtilis ranging from 6 to 25 mm, Staphylococcus aureus from 8 to 25 mm, and Escherichia coli from 10 to 19 mm, whereas Pseudomonas aeruginosa has shown resistance to the AgNPs solution. The MBC varied from 22.3 to 36.8 nanoparticles against the chosen bacterial strains ranged from 5.7 to 10.2 concentration (MNTC) of Ag-NPs, 10.56 µg/mL, the greenly generated Ag antiviral efficacy against HSV-1, HAV, and adenovirus Finally, The novelty in this study is the application of silver nanoparticles as an antiviral against HSV adenovirus because of the high mutation of viruses.
Viruses pose a serious threat to the sustainable production of economically important crops aroun... more Viruses pose a serious threat to the sustainable production of economically important crops around the world. In the past 20 years, potato virus Y (PVY) emerged as a relatively new and very serious problem in potatoes, even though it is the oldest known plant virus. Multiple strains of the virus cause various symptoms on the leaves and tubers of potatoes, resulting in yield reduction and poor-quality tubers. Consequently, it would be very interesting to learn what causes systemic PVY resistance in plants. Natural compounds such as chitosan (CHT) and phosphorus have been developed as alternatives to chemical pesticides to manage crop diseases in recent years. In the current study, potato leaves were foliar-sprayed with chitosan and phosphorus to assess their ability to induce PVY resistance. Compared to untreated plants, the findings demonstrated a significant decrease in disease severity and PVY accumulation in plants for which CHT and P were applied. Every treatment includes significantly increased growth parameters, chlorophyll content, photosynthetic characteristics, osmoprotectants (glycine betaine, proline, and soluble sugar), nonenzymatic antioxidants (glutathione, phenols, and ascorbic acid), enzymatic antioxidants (peroxidase, superoxide dismutase, lipoxygenase, glutathione reductase, catalase, β-1,3 glucanase, and ascorbate peroxidase), phytohormones (gibberellic acid, indole acetic acid, jasmonic acid, and salicylic acid), and mineral content (phosphorus, nitrogen, and potassium), compared to infected plants. However, compared to PVY infection values, CHT and P treatments showed a significant decrease in malondialdehyde, DPPH, H2O2, O2, OH, and abscisic acid levels. In addition, increased expression levels of some regulatory defense genes, including superoxide dismutase (SOD), ascorbic acid peroxidase (APX), relative pathogenesis-related 1 basic (PR-1b), and relative phenylalanine ammonia-lyase (PAL), were found in all treated plants, compared to PVY-infected plants. Conclusion: Phosphorus is the most effective treatment for alleviating virus infections.
Viruses are the most abundant living things and a source of genetic variation. Despite recent res... more Viruses are the most abundant living things and a source of genetic variation. Despite recent research, we know little about their biodiversity and geographic distribution. We used different bioinformatics tools, MG-RAST, genome detective web tools, and GenomeVx, to describe the first metagenomic examination of haloviruses in Wadi Al-Natrun. The discovered viromes had remarkably different taxonomic compositions. Most sequences were derived from double-stranded DNA viruses, especially from Myoviridae, Podoviridae, Siphoviridae, Herpesviridae, Bicaudaviridae, and Phycodnaviridae families; single-stranded DNA viruses, especially from the family Microviridae; and positive-strand RNA viruses, especially from the family Potyviridae. Additionally, our results showed that Myohalovirus chaoS9 has eight Contigs and is annotated to 18 proteins as follows: tail sheath protein, tco, nep, five uncharacterized proteins, HCO, major capsid protein, putative pro head protease protein, putative head assembly protein, CxxC motive protein, terl, HTH domain protein, and terS Exon 2. Additionally, Halorubrum phage CGphi46 has 19 proteins in the brine sample as follows: portal protein, 17 hypothetical proteins, major capsid protein, etc. This study reveals viral lineages, suggesting the Virus's global dispersal more than other microorganisms. Our study clarifies how viral communities are connected and how the global environment changes.
The present study aimed to estimate the antiviral activities of Ginkgo biloba (GB) leaves extract... more The present study aimed to estimate the antiviral activities of Ginkgo biloba (GB) leaves extract and eco-friendly free silver nanoparticles (Ag NPs) against the MERS-CoV (Middle East respiratory syndrome-coronavirus) and HCoV-229E (human coronavirus 229E), as well as isolation and identification of phytochemicals from GB. Different solvents and high-performance liquid chromatography (HPLC) were used to extract and identify flavonoids and phenolic compounds from GBleaves. The green, silver nanoparticle synthesis was synthesized from GB leaves aqueous extract and investigated for their possible effects as anti-coronaviruses MERS-CoV and HCoV-229E MTTassay protocol. To verify the synthesis of Ag NPs, several techniques were employed, including X-ray diffraction (XRD), scan, transmission electron microscopy, FT-IR, and UV–visible spectroscopy. The highest contents of flavonoids and phenolic compounds were recorded for acetone, methanol, and ethanol as mixtures with water, in addition to pure water. HPLC flavonoids were detected as apegenin, luteolin, myricetin, and catechin, while HPLC phenolic compounds were pyrogallol, caffeic acid, gallic acid, and ellagic acid. In addition, our results revealed that Ag NPs were produced through the shift from yellow to dark brown. TEM examination of Ag NPs revealed spherical nanoparticles with mean sizes ranging from 5.46 to 19.40 nm and an average particle diameter of 11.81 nm. A UV–visible spectrophotometric investigation revealed an absorption peak at λ max of 441.56 nm. MTT protocol signified the use of GB leaves extract as an anti-coronavirus to be best from Ag NPsbecause GB extract had moderate anti-MERS-CoV with SI = 8.94, while had promising anti-HCov-229E, with an SI of 21.71. On the other hand, Ag NPs had a mild anti-MERS-CoV with SI = 4.23, and a moderate anti-HCoV-229E, with an SI of 7.51.
The seeds of garden cress, Lepidium sativum L., are a fantastic source of phytochemicals and prot... more The seeds of garden cress, Lepidium sativum L., are a fantastic source of phytochemicals and proteins. The purpose of the current study was to use solvent extraction techniques to examine the physicochemical characteristics and biological activities of garden cress (L. sativum) seed oil extracts and compounds against Staphylococcus aureus, in vitro, molecular docking and pharmacokinetics. MATERIALS AND METHODS: Cress seed oil were collected from Sakaka, Saudi Arabia's Al-Jouf market. Seeds were crushed in 80% ethanol for several extraction. The oil extraction was forced through a perforated tube, and the meal was expelled via a calibrated aperture. After that, a centrifuge was used to separate the oil from the plant debris (15 min). Study the anti-Staphylococcus aureus of cress seed oil by Well-Diffusion Assay, while cress oil molecules docked against Staphylococcus aureus target (pdb-id: 2XCS) by MOE 19.0901 Software. The pharmacokinetics (ADMET) and Lipinski's rules were predicted by pKCSM online server (available at: https://biosig. lab.uq.edu.au/pkcsm/prediction). RESULTS: The outcome showed that the oil yield for seed oil extract, the specific gravity (0.93) and concentration (33%) was substantially greater. Our findings included a maximal zone of inhibition (23 mm), a minimum inhibitory concentration (MIC) of 80 µg/mL, and a minimum bactericidal concentration (MBC) of 170 µg/mL of cress oil against Staphylococcus aureus. The docking results indicated that the affinity score of Quercetin-3-O-glucosylgalactoside docked against pdb-id: 2XCS was 9.48, while RMSD 1.59 Å compared with the co-crystallized ligand showed an affinity score of-7.58 kcal/mol and RMSD 1.32 Å. CONCLUSIONS: Our findings suggest that Cress seed oil might be utilised to protect food from S. aureus infection that is resistant to antibiotics.
Background: Otitis externa and otitis media are two types of ear infections that affect people of... more Background: Otitis externa and otitis media are two types of ear infections that affect people of all ages, although they are more common in newborns and young children. Antibiotic usage, healthcare, and advanced age all play a role in the development of this illness. Methods: Fifty-eight patients with various kinds of infections of the ears were voluntary patients attending the outpatient clinics of the Prince Mutaib Bin Abdulaziz Hospital in Sakaka, Al Jouf, Saudi Arabia, examined to evaluate the role of bacteria and the likely significance of plasmids in their antibiotic resistance as ear infectious agents. Results: Staphylococcus aureus and Pseudomonas aeruginosa are the most prevalent bacteria found in ear infections. The greatest number of major bacterial isolates were S. aureus (54%), followed by P. aeruginosa (13%), whereas a smaller number of isolates (3%) were from Streptococcus pyogenes, Bacillus subtilis, and Proteus vulgaris, respectively. Mixed growth was noted in 3.4% of instances. The isolation rate for Gram-positive organisms was 72%, while the rate for Gram-negative species was 28%. All the isolates had DNA greater than 14 kilobases. Hind III analysis of the plasmid DNA extracted from the resistant strains of ear infection demonstrated that antibiotic-resistance plasmids were extensively dispersed. Exotoxin A PCR amplification indicated 396 pb PCR-positive DNA for all identified samples, with the exception of three strains for which no band was observed. Patients in the epidemiological study ranged in number, but all were linked together for the purposes of the study because of their shared epidemiological characteristics. Conclusion: Vancomycin, linezolid, tigecycline, rifampin, and daptomycin are all antibiotics that have been shown to be effective against S. aureus and P. aeruginosa. Microbiological pattern evaluation and antibiotic sensitivity patterns of the microorganisms providing empirical antibiotics are becoming increasingly crucial to minimize issues and the development of antibiotic-resistant strains.
Hematopoietic stem cells (HsCs) and hematopoietic progenitor cells (HPCs) play a crucial role in ... more Hematopoietic stem cells (HsCs) and hematopoietic progenitor cells (HPCs) play a crucial role in the context of viral infections and their associated diseases. The link between HsCs and HPCs and disease status in CoVid-19 patients is largely unknown. This study aimed to monitor the kinetics and contributions of HsCs and HPCs in severe and non-severe CoVid-19 patients and to evaluate their diagnostic performance in differentiating between healthy and CoVid-19 patients as well as severe and non-severe cases. Peripheral blood (Pb) samples were collected from 48 CoVid-19 patients, 16 recovered, and 27 healthy controls and subjected to deep flow cytometric analysis to determine HsCs and progenitor cells. Their diagnostic value and correlation with C-reactive protein (CrP), d-dimer, and ferritin levels were determined. The percentages of HsCs and common myeloid progenitors (CMPs) declined significantly, while the percentage of multipotent progenitors (MPPs) increased significantly in CoVid-19 patients. There were no significant differences in the percentages of megakaryocyte-erythroid progenitors (MePs) and granulocyte-macrophage progenitors (gMPs) between all groups. severe CoVid-19 patients had a significantly low percentage of HsCs, CMPs, and gMPs compared to non-severe cases. Contrarily, the levels of CrP, d-dimer, and ferritin increased significantly in severe CoVid-19 patients. MPPs and CMPs showed excellent diagnostic performance in distinguishing CoVid-19 patients from healthy controls and severe from non-severe CoVid-19 patients, respectively. Collectively, our study indicated that hematopoietic stem and progenitor cells are significantly altered by CoVid-19 and could be used as therapeutic targets and diagnostic biomarkers for severe CoVid-19.
A novel coronavirus strain called SARS-CoV-2 first appeared in China in December 2019. Natural p... more A novel coronavirus strain called SARS-CoV-2 first appeared in China in December 2019. Natural products are significant sources of prospective and new antiviral medications, and new antiviral drug research has advanced significantly in recent years. The current study allows us to select specific components of olive oil that are thought to be anti-SARS-CoV-2 and assess their impact on SARS-CoV-2 in vitro. The 26 compounds of olive oil were obtained from the PubChem database and docked against the RdRP of SARS-CoV-2 (pdb id: 6XQB) by autodock vina 1 1 2 linux x86 software. Cytotoxicity and antiviral activity were measured by the MTT assay protocol (the crystal violet method). The findings revealed that the range of the olive oil compound’s molecular docking binding affinity score against the RdRP SARS-CoV-2 target was 5.9–18.2 kcal/mol. The best compound is apigenin since it has a low energy value of −18.2 kcal/mol, followed by taxifolin, which has an energy value of −14.2 kcal/mol. On the other hand, the molecule with the lowest energy is believed to be the good one. Additionally, Lipinski’s criteria and AD-MET analysis supported the created apigenin and taxifolin’s status as a secure pharmaceutical substance. Also, apigenin and taxifolin showed moderate antiviral effectiveness against SARS-CoV-2 in vitro, with SI values of 9.7 and 8.79, respectively, compared with olive oil’s crude SI value of 9.57. According to our results, we think that olive oil is an essential source of cutting-edge SARS-CoV-2 antiviral drugs, especially apigenin and taxifolin compounds.
Background: Wound infection is a prevalent concern in the medical field, being is a multi-step pr... more Background: Wound infection is a prevalent concern in the medical field, being is a multi-step process involving several biological processes. Methicillin-resistant S. aureus (MRSA) and vancomycin-resistant S. aureus (VRSA) infections often occur in areas of damaged skin, such as abrasions and open wounds. Methods: This research aims to light the incidence of MRSA and VRSA in wound swabs, the antimicrobial susceptibility configuration of isolated S. aureus patterns in pus/wound samples collected from Saudi Arabian tertiary hospital. The cross section study, β-lactamase detection, VRSA genotyping, MAR index, D-test and VRSA genotyping are methods, which used for completed this research. Results: Patients of several ages and genders delivered specimens from two hospitals in the Al jouf area, in the northern province of Saudi Arabia. S. aureus was found in 188 (34.7%) of the 542 wounds. The traumatized wounds provided 71 isolates (38.8%), surgical wound provided 49 isolates (26.8%) and abscess were represented 16 by isolates (8.7%). In the study, 123 (65.4%) out of 188 were MRSA, 60 (31.9%) were MSSA, and five (2.7%) were VRSA. Linezolid and rifampin were found to be the most effective antimicrobials with 100% in vitro antibacterial activity against S. aureus isolates. The Multiple antimicrobials resistance (MAR) index revealed 73 isolates (38.9%) with a MAR index greater than 0.2, and 115 (61.1%) less than 0.2. The D-test showed that of MLS b phenotypes among S. aureus, 22 (11.7%) strains were D-test positive (MLSb i phenotype), 53 (28.2%) strains were constitutive MLS c phenotypes, and 17 (9%) strains were shown to have MSb phenotypes. All VRSA isolates (n=5) were found to be positive for vanA, and no vanB positive isolates were detected in the study. Conclusion: Regular monitoring and an antimicrobials stewardship program should be in place to provide critical information that can be utilized for empirical therapy and future prevention strategies.
Books by Mohamed Elnosary
Flavonoids are a major class of secondary metabolites that comprises more than 6000 compounds tha... more Flavonoids are a major class of secondary metabolites that comprises more than 6000 compounds that have been identified. They are biosynthesized via the phenylpropanoid metabolic pathway that involves groups of enzymes such as isomerases, hydroxylases, and reductases that greatly affect the determination of the flavonoid skeleton. For example, transferase enzymes responsible for the modification of sugar result in changes in the physiological activity of the flavonoids and changes in their physical properties, such as solubility, reactivity, and interaction with cellular target molecules, which affect their pharmacodynamics and pharmacokinetic properties. In addition, flavonoids have diverse biological activities such as antioxidants, anticancer, and antiviral in managing Alzheimer's disease. However, most marine flavonoids are still incompletely discovered because marine flavonoid biosynthesis is produced and possesses unique substitutions that are not commonly found in terrestrial bioactive compounds. The current chapter will illustrate the importance of flavonoids' role in metabolism and the main difference between marine and terrestrial flavonoids.
Uploads
Papers by Mohamed Elnosary
Books by Mohamed Elnosary