Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

Radiano

unidade de padrão de medida angular

O radiano (símbolo: rad ou, mais raramente, c) é a razão entre o comprimento de um arco e o seu raio. Ele é a unidade padrão de medida angular utilizada em muitas áreas da matemática. É uma das unidades derivadas do Sistema Internacional. Em algumas situações, o radiano é considerado um número adimensional e a escrita do seu símbolo é pouco utilizada.

Medida angular em radianos

Definição

editar

Radiano (1 rad) é o ângulo definido em um círculo por um arco de circunferência com o mesmo comprimento que o raio do referido círculo.

1 rad = m·m−1 = 1.

Explicação

editar
 
Um arco de circunferência cujo comprimento é igual ao raio r (em vermelho) corresponde a um ângulo de 1 radiano (em verde). A metade da circunferência corresponde a π radianos e uma circunferência completa a 2π.

O radiano é útil para distinguir entre quantidades de diferentes naturezas, mas com a mesma dimensão. Por exemplo, velocidade angular pode ser medida em radianos por segundo (rad/s). Fixando a palavra radiano enfatiza-se o fato de a velocidade angular ser igual a 2π vezes a frequência rotacional.

Na prática, o símbolo rad é usado quando tal for apropriado, mas a unidade derivada "1" é geralmente omitida quando combinada com um valor numérico.

Ângulos medidos em radianos são frequentemente apresentados sem qualquer unidade explícita. Quando, porém, uma unidade é apresentada, tanto o símbolo rad quanto o símbolo c (de "circular") costumam ser utilizados. É preciso ter cuidado com este último, em virtude da confusão que pode existir com o símbolo de grau ordinário °.

Existem 2π (aproximadamente 6,28318531) radianos num círculo completo, portanto:

 
 

ou:

 
 

Mais genericamente, podemos dizer:

 

Se, por exemplo,   em radianos foi dado, o ângulo ordinário correspondente seria:

 

Em cálculos, ângulos devem ser representados em radianos nas funções trigonométicas, dado que simplifica e torna as coisas mais naturais. Por exemplo, o uso de radianos leva à identidade com:[1]

 

que é a base de muitas outras elegantes identidades em matemática, incluindo:

 

Conversões

editar
 
Um gráfico para converter entre graus e radianos
Conversão de ângulos comuns
Voltas Radianos Graus Grados
0 0 0g
124 π12 15° 162g
112 π6 30° 331g
110 π5 36° 40g
18 π4 45° 50g
12π 1 c. 57.3° c. 63.7g
16 π3 60° 662g
15 2π5 72° 80g
14 π2 90° 100g
13 2π3 120° 1331g
25 4π5 144° 160g
12 π 180° 200g
34 3π2 270° 300g
1 2π 360° 400g

Referências

  1. For a debate on this meaning and use see: Brownstein, K. R. (1997). «Angles—Let's treat them squarely». American Journal of Physics. 65 (7). 605 páginas. doi:10.1119/1.18616 , Romain, J.E. (1962). «Angles as a fourth fundamental quantity». Journal of Research of the National Bureau of Standards-B. Mathematics and Mathematical Physics. 66B (3). 97 páginas , LéVy-Leblond, Jean-Marc (1998). «Dimensional angles and universal constants». American Journal of Physics. 66 (9). 814 páginas. doi:10.1119/1.18964 , and Romer, Robert H. (1999). «Units—SI-Only, or Multicultural Diversity?». American Journal of Physics. 67. 13 páginas. doi:10.1119/1.19185 

Ver também

editar